@misc{zheng_wu_wang_cheng_zou_li_du_kan_2023, title={Biomarkers of Micronutrients and Phytonutrients and Their Application in Epidemiological Studies}, volume={15}, ISSN={["2072-6643"]}, DOI={10.3390/nu15040970}, abstractNote={Nutritional biomarkers can be used as important indicators of nutritional status and play crucial roles in the prevention as well as prognosis optimization of various metabolism-related diseases. Measuring dietary with the deployment of biomarker assessments provides quantitative nutritional information that can better predict the health outcomes. With the increased availability of nutritional biomarkers and the development of assessment tools, the specificity and sensitivity of nutritional biomarkers have been greatly improved. This enables efficient disease surveillance in nutrition research. A wide range of biomarkers have been used in different types of studies, including clinical trials, observational studies, and qualitative studies, to reflect the relationship between diet and health. Through a comprehensive literature search, we reviewed the well-established nutritional biomarkers of vitamins, minerals, and phytonutrients, and their association with epidemiological studies, to better understand the role of nutrition in health and disease.}, number={4}, journal={NUTRIENTS}, author={Zheng, Jianheng and Wu, Feng and Wang, Feijie and Cheng, Junrui and Zou, Hong and Li, Yuan and Du, Jun and Kan, Juntao}, year={2023}, month={Feb} } @article{balbuena_cheng_eroglu_2022, title={Carotenoids in orange carrots mitigate non-alcoholic fatty liver disease progression}, volume={9}, ISSN={["2296-861X"]}, DOI={10.3389/fnut.2022.987103}, abstractNote={BackgroundCarotenoids are abundant in colored fruits and vegetables. Non-alcoholic fatty liver disease (NAFLD) is a global burden and risk factor for end-stage hepatic diseases. This study aims to compare the anti-NAFLD efficacy between carotenoid-rich and carotenoid-deficient vegetables.Materials and methodsMale C57BL/6J mice were randomized to one of four experimental diets for 15 weeks (n = 12 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 60% calories from fat), HFD with 20% white carrot powders (HFD + WC), or with 20% orange carrot powders (HFD + OC).ResultsWe observed that carotenoids in the orange carrots reduced HFD-induced weight gain, better than white carrots. Histological and triglyceride (TG) analyses revealed significantly decreased HFD-induced hepatic lipid deposition and TG content in the HFD + WC group, which was further reduced in the HFD + OC group. Western blot analysis demonstrated inconsistent changes of fatty acid synthesis-related proteins but significantly improved ACOX-1 and CPT-II, indicating that orange carrot carotenoids had the potential to inhibit NAFLD by improving β-oxidation. Further investigation showed significantly higher mRNA and protein levels of PPARα and its transcription factor activity.ConclusionCarotenoid-rich foods may display more potent efficacy in mitigating NAFLD than those with low carotenoid levels.}, journal={FRONTIERS IN NUTRITION}, author={Balbuena, Emilio and Cheng, Junrui and Eroglu, Abdulkerim}, year={2022}, month={Sep} } @misc{wang_zheng_cheng_zou_li_deng_luo_wang_huang_li_et al._2022, title={Personalized nutrition: A review of genotype-based nutritional supplementation}, volume={9}, ISSN={["2296-861X"]}, DOI={10.3389/fnut.2022.992986}, abstractNote={Nutritional disorders have become a major public health issue, requiring increased targeted approaches. Personalized nutrition adapted to individual needs has garnered dramatic attention as an effective way to improve nutritional balance and maintain health. With the rapidly evolving fields of genomics and nutrigenetics, accumulation of genetic variants has been indicated to alter the effects of nutritional supplementation, suggesting its indispensable role in the genotype-based personalized nutrition. Additionally, the metabolism of nutrients, such as lipids, especially omega-3 polyunsaturated fatty acids, glucose, vitamin A, folic acid, vitamin D, iron, and calcium could be effectively improved with related genetic variants. This review focuses on existing literatures linking critical genetic variants to the nutrient and the ways in which these variants influence the outcomes of certain nutritional supplementations. Although further studies are required in this direction, such evidence provides valuable insights for the guidance of appropriate interventions using genetic information, thus paving the way for the smooth transition of conventional generic approach to genotype-based personalized nutrition.}, journal={FRONTIERS IN NUTRITION}, author={Wang, Feijie and Zheng, Jianheng and Cheng, Junrui and Zou, Hong and Li, Mingfeng and Deng, Bin and Luo, Rong and Wang, Feng and Huang, Dingqiang and Li, Gang and et al.}, year={2022}, month={Sep} } @misc{kan_wu_wang_zheng_cheng_li_yang_du_2022, title={Phytonutrients: Sources, bioavailability, interaction with gut microbiota, and their impacts on human health}, volume={9}, ISSN={["2296-861X"]}, DOI={10.3389/fnut.2022.960309}, abstractNote={Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.}, journal={FRONTIERS IN NUTRITION}, author={Kan, Juntao and Wu, Feng and Wang, Feijie and Zheng, Jianheng and Cheng, Junrui and Li, Yuan and Yang, Yuexin and Du, Jun}, year={2022}, month={Aug} } @article{kan_cheng_hu_chen_liu_venzon_murray_li_du_2021, title={A Botanical Product Containing Cistanche and Ginkgo Extracts Potentially Improves Chronic Fatigue Syndrome Symptoms in Adults: A Randomized, Double-Blind, and Placebo-Controlled Study}, volume={8}, ISSN={["2296-861X"]}, DOI={10.3389/fnut.2021.658630}, abstractNote={Dietary therapy may be beneficial in alleviating symptoms of chronic fatigue syndrome (CFS), a disorder that is characterized by extreme fatigue and other symptoms, but the cause of which remains unclear. The aim of this study was to evaluate the protective effect of a botanical product containing cistanche (Cistanche tubulosa [Schenk] Wight) and ginkgo (Ginkgo biloba L.) extracts on adults with CFS in a randomized, double-blind, placebo-controlled clinical trial. A total of 190 subjects (35–60 years old, non-obese) with CFS were randomized to receive one tablet of a low dose (120-mg ginkgo and 300-mg cistanche), a high dose (180-mg ginkgo and 450-mg cistanche) or a placebo once daily for 60 days. Blood samples and responses on the Chalder fatigue scale (CFQ 11), the World Health Organization's quality of life questionnaire (WHOQOL), and the sexual life quality questionnaire (SLQQ) were collected at baseline and post-intervention. CFS symptoms of impaired memory or concentration, physical fatigue, unrefreshing sleep, and post-exertional malaise were significantly improved (p < 0.001) in both of the treatment groups. The botanical intervention significantly decreased physical and mental fatigue scores of CFQ 11 and improved WHOQOL and SLQQ scores of the subjects (p < 0.01). Levels of blood ammonia and lactic acid in the treatment groups were significantly lower than those of the placebo group (low-dose: p < 0.05; high-dose: p < 0.01). In addition, the change in lactic acid concentration was negatively associated with the severity of CFS symptoms (p = 0.0108) and was correlated with the change in total physical fatigue score of the CFQ (p = 0.0302). Considering the trivial effect size, the results may lack clinical significance. In conclusion, this botanical product showed promising effects in ameliorating the symptoms of CFS. Clinical trials with improved assessment tools, an expanded sample size, and an extended follow-up period are warranted to further validate the findings.Clinical Trial Registration:https://clinicaltrials.gov/, identifier: NCT02807649.}, journal={FRONTIERS IN NUTRITION}, author={Kan, Juntao and Cheng, Junrui and Hu, Chun and Chen, Liang and Liu, Siyu and Venzon, Dawna and Murray, Mary and Li, Shuguang and Du, Jun}, year={2021}, month={Nov} } @article{durmusoglu_al'abri_collins_cheng_eroglu_beisel_crook_2021, title={In Situ Biomanufacturing of Small Molecules in the Mammalian Gut by Probiotic Saccharomyces boulardii}, volume={10}, ISSN={["2161-5063"]}, url={https://doi.org/10.1021/acssynbio.0c00562}, DOI={10.1021/acssynbio.0c00562}, abstractNote={Saccharomyces boulardii is a probiotic yeast that exhibits rapid growth at 37 °C, is easy to transform, and can produce therapeutic proteins in the gut. To establish its ability to produce small molecules encoded by multigene pathways, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements. We next demonstrated efficient (>95%) CRISPR-mediated genome editing in this strain, allowing us to probe engineered gene expression across different genomic sites. We leveraged these strategies to assemble pathways enabling a wide range of vitamin precursor (β-carotene) and drug (violacein) titers. We found that S. boulardii colonizes germ-free mice stably for over 30 days and competes for niche space with commensal microbes, exhibiting short (1-2 day) gut residence times in conventional and antibiotic-treated mice. Using these tools, we enabled β-carotene synthesis (194 μg total) in the germ-free mouse gut over 14 days, estimating that the total mass of additional β-carotene recovered in feces was 56-fold higher than the β-carotene present in the initial probiotic dose. This work quantifies heterologous small molecule production titers by S. boulardii living in the mammalian gut and provides a set of tools for modulating these titers.}, number={5}, journal={ACS SYNTHETIC BIOLOGY}, publisher={American Chemical Society (ACS)}, author={Durmusoglu, Deniz and Al'Abri, Ibrahim S. and Collins, Scott P. and Cheng, Junrui and Eroglu, Abdulkerim and Beisel, Chase L. and Crook, Nathan}, year={2021}, month={May}, pages={1039–1052} } @misc{cheng_eroglu_2021, title={The Promising Effects of Astaxanthin on Lung Diseases}, volume={12}, ISSN={["2156-5376"]}, url={https://doi.org/10.1093/advances/nmaa143}, DOI={10.1093/advances/nmaa143}, abstractNote={Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.}, number={3}, journal={ADVANCES IN NUTRITION}, author={Cheng, Junrui and Eroglu, Abdulkerim}, year={2021}, month={May}, pages={850–864} } @article{cheng_balbuena_miller_eroglu_2021, title={The Role of beta-Carotene in Colonic Inflammation and Intestinal Barrier Integrity}, volume={8}, ISSN={["2296-861X"]}, DOI={10.3389/fnut.2021.723480}, abstractNote={Background: Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, β-carotene, in the in vitro epithelial cell model.Methods: We examined the function of β-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of β-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression.Results: β-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. β-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function.Conclusions: β-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of β-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.}, journal={FRONTIERS IN NUTRITION}, author={Cheng, Junrui and Balbuena, Emilio and Miller, Baxter and Eroglu, Abdulkerim}, year={2021}, month={Sep} } @article{kan_cheng_guo_chen_zhang_du_2020, title={A Novel Botanical Combination Attenuates Light-Induced Retinal Damage through Antioxidant and Prosurvival Mechanisms}, volume={2020}, ISSN={["1942-0994"]}, DOI={10.1155/2020/7676818}, abstractNote={The prevalence of light-induced eye fatigue is increasing globally. Efficient regimen for mitigating light-induced retinal damage is becoming a compelling need for modern society. We investigated the effects of a novel combination of lutein ester, zeaxanthin, chrysanthemum, goji berry, and black currant extracts against retinal damage. In the current work, both in vitro and in vivo light-induced retinal damage models were employed. Animal study showed that under strong light exposure (15000 lx for 2 hours), the a-wave and b-wave from electroretinogram were significantly decreased. Treatment with the combination significantly restored the decrease for b-wave under high- and low-stimulus intensity. Histological analysis reported a substantial decrease in the outer nuclear layer (ONL) thickness in the model group, while the supplementation with the combination significantly improved the ONL thickness. To further explore the underlying mechanism of the protective effects, we utilized ARPE-19 retinal pigment epithelial cell line and found that strong light stimulation (2900 lx for 30 minutes) significantly increased phosphorylation of p38 and JNK and decreased HIF expression. Intriguingly, chrysanthemum, black currant extracts, lutein ester, and zeaxanthin significantly decreased the phosphorylation of p38 and JNK, while chrysanthemum, goji berry, black currant extracts, and lutein ester restored HIF expression. The botanical combination can alleviate light-induced retina damage, potentially through antioxidant and prosurvival mechanisms.}, journal={OXIDATIVE MEDICINE AND CELLULAR LONGEVITY}, author={Kan, Juntao and Cheng, Junrui and Guo, Jun and Chen, Liang and Zhang, Xue and Du, Jun}, year={2020}, month={Mar} }