John Thomas Huang, J., & Thomas, J. E. (2024). Energy-resolved spin correlation measurements: Decoding transverse spin dynamics in weakly interacting Fermi gases. Physical Review A. https://doi.org/10.1103/PhysRevA.109.L041301 Huang, J., Royse, C. A., Arakelyan, I., & Thomas, J. E. (2023). Verifying a quasiclassical spin model of perturbed quantum rewinding in a Fermi gas. PHYSICAL REVIEW A, 108(4). https://doi.org/10.1103/PhysRevA.108.L041304 Wang, X., Li, X., Arakelyan, I., & Thomas, J. E. (2022). Hydrodynamic Relaxation in a Strongly Interacting Fermi Gas. PHYSICAL REVIEW LETTERS, 128(9). https://doi.org/10.1103/PhysRevLett.128.090402 Pegahan, S., Arakelyan, I., & Thomas, J. E. (2021). Energy-Resolved Information Scrambling in Energy-Space Lattices. PHYSICAL REVIEW LETTERS, 126(7). https://doi.org/10.1103/PhysRevLett.126.070601 Thomas, J. (2020). Fermi Gases in Bichromatic Superlattices. https://doi.org/10.2172/1573239 Arunkumar, N., Jagannathan, A., & Thomas, J. E. (2019). Designer Spatial Control of Interactions in Ultracold Gases. PHYSICAL REVIEW LETTERS, 122(4). https://doi.org/10.1103/PhysRevLett.122.040405 Baird, L., Wang, X., Roof, S., & Thomas, J. E. (2019). Measuring the Hydrodynamic Linear Response of a Unitary Fermi Gas. PHYSICAL REVIEW LETTERS, 123(16). https://doi.org/10.1103/PhysRevLett.123.160402 Pegahan, S., Kangara, J., Arakelyan, I., & Thomas, J. E. (2019). Spin-energy correlation in degenerate weakly interacting Fermi gases. PHYSICAL REVIEW A, 99(6). https://doi.org/10.1103/PhysRevA.99.063620 Kangara, J., Cheng, C., Pegahan, S., Arakelyan, I., & Thomas, J. E. (2018). Atom Pairing in Optical Superlattices. PHYSICAL REVIEW LETTERS, 120(8). https://doi.org/10.1103/physrevlett.120.083203 Arunkumar, N., Jagannathan, A., & Thomas, J. (2018). Probing Energy-Dependent Feshbach Resonances by Optical Control. PHYSICAL REVIEW LETTERS, 121(16). https://doi.org/10.1103/PhysRevLett.121.16344 Cheng, C., Kangara, J., Arakelyan, I., & Thomas, J. E. (2016). Fermi gases in the two-dimensional to quasi-two-dimensional crossover. PHYSICAL REVIEW A, 94(3). https://doi.org/10.1103/physreva.94.031606 Jagannathan, A., Arunkumar, N., Joseph, J. A., & Thomas, J. E. (2016). Optical Control of Magnetic Feshbach Resonances by Closed-Channel Electromagnetically Induced Transparency. PHYSICAL REVIEW LETTERS, 116(7). https://doi.org/10.1103/physrevlett.116.075301 Joseph, J. A., Elliott, E., & Thomas, J. E. (2015). Shear Viscosity of a Unitary Fermi Gas Near the Superfluid Phase Transition. PHYSICAL REVIEW LETTERS, 115(2). https://doi.org/10.1103/physrevlett.115.020401 Ong, W., Cheng, C., Arakelyan, I., & Thomas, J. E. (2015). Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases. PHYSICAL REVIEW LETTERS, 114(11). https://doi.org/10.1103/physrevlett.114.110403 Elliott, E., Joseph, J. A., & Thomas, J. E. (2014). Anomalous Minimum in the Shear Viscosity of a Fermi Gas. PHYSICAL REVIEW LETTERS, 113(2). https://doi.org/10.1103/physrevlett.113.020406 Elliott, E., Joseph, J. A., & Thomas, J. E. (2014). Observation of Conformal Symmetry Breaking and Scale Invariance in Expanding Fermi Gases. PHYSICAL REVIEW LETTERS, 112(4). https://doi.org/10.1103/physrevlett.112.040405 Wu, H., & Thomas, J. E. (2012). Optical Control of Feshbach Resonances in Fermi Gases Using Molecular Dark States. PHYSICAL REVIEW LETTERS, 108(1). https://doi.org/10.1103/physrevlett.108.010401 Wu, H., & Thomas, J. E. (2012). Optical control of the scattering length and effective range for magnetically tunable Feshbach resonances in ultracold gases. PHYSICAL REVIEW A, 86(6). https://doi.org/10.1103/physreva.86.063625 Zhang, Y., Ong, W., Arakelyan, I., & Thomas, J. E. (2012). Polaron-to-Polaron Transitions in the Radio-Frequency Spectrum of a Quasi-Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS, 108(23). https://doi.org/10.1103/physrevlett.108.235302 Thomas, J. E. (2011). Spin drag in a perfect fluid. Nature, 472(7342), 172–173. https://doi.org/10.1038/472172a Thomas, J. E. (2010). The nearly perfect Fermi gas. Physics Today, 63(5), 34–37. https://doi.org/10.1063/1.3431329 Cao, C., Elliott, E., Joseph, J., Wu, H., Petricka, J., Schafer, T., & Thomas, J. E. (2010). Universal Quantum Viscosity in a Unitary Fermi Gas. Science, 331(6013), 58–61. https://doi.org/10.1126/science.1195219 Thomas, J. E. (2009). Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid? Nuclear Physics A, 830(1-4), 665c–672c. https://doi.org/10.1016/j.nuclphysa.2009.09.055 Luo, L., & Thomas, J. E. (2009). Thermodynamic Measurements in a Strongly Interacting Fermi Gas. Journal of Low Temperature Physics, 154(1-2), 1–29. https://doi.org/10.1007/s10909-008-9850-2 Turlapov, A., Kinast, J., Clancy, B., Luo, L., Joseph, J., & Thomas, J. E. (2008). Is a Gas of Strongly Interacting Atomic Fermions a Nearly Perfect Fluid? Journal of Low Temperature Physics, 150(3-4), 567–576. https://doi.org/10.1007/s10909-007-9589-1 Thomas, J. E. (2006). Superfluidity in the picture. Nature, 442(7098), 32–33. https://doi.org/10.1038/442032a Thomas, J. E. (2006). Ultracold Fermi gas on a chip. Nature Physics, 2(6), 377–378. https://doi.org/10.1038/nphys326 Kinast, J., Turlapov, A., Thomas, J. E., Chen, Q., Stajic, J., & Levin, K. (2005). Heat Capacity of a Strongly Interacting Fermi Gas. Science, 307(5713), 1296–1299. https://doi.org/10.1126/science.1109220 Thomas, J. E., Kinast, J., & Turlapov, A. (2005). Virial Theorem and Universality in a Unitary Fermi Gas. Physical Review Letters, 95(12). https://doi.org/10.1103/physrevlett.95.120402 Thomas, J. E., Hemmer, S. L., Kinast, J., Turlapov, A., Gehm, M. E., & O'Hara, K. M. (2004). Dynamics of a Highly-Degenerate, Strongly-Interacting Fermi Gas of Atoms. Journal of Low Temperature Physics, 134(1/2), 655–664. https://doi.org/10.1023/b:jolt.0000012624.69815.77 Kinast, J., Hemmer, S. L., Gehm, M. E., Turlapov, A., & Thomas, J. E. (2004). Evidence for Superfluidity in a Resonantly Interacting Fermi Gas. Physical Review Letters, 92(15). https://doi.org/10.1103/physrevlett.92.150402 Granade, S. R., Gehm, M. E., O'Hara, K. M., & Thomas, J. E. (2002). All-Optical Production of a Degenerate Fermi Gas. Physical Review Letters, 88(12). https://doi.org/10.1103/physrevlett.88.120405 Lee, K. F., & Thomas, J. E. (2002). Experimental Simulation of Two-Particle Quantum Entanglement using Classical Fields. Physical Review Letters, 88(9). https://doi.org/10.1103/physrevlett.88.097902 O’Hara, K. M., Hemmer, S. L., Gehm, M. E., Granade, S. R., & Thomas, J. E. (2002). Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms. Science, 298(5601), 2179–2182. https://doi.org/10.1126/science.1079107 O’Hara, K. M., Gehm, M. E., Granade, S. R., & Thomas, J. E. (2001). Scaling laws for evaporative cooling in time-dependent optical traps. Physical Review A, 64(5). https://doi.org/10.1103/physreva.64.051403 Savard, T. A., O’Hara, K. M., & Thomas, J. E. (1997). Laser-noise-induced heating in far-off resonance optical traps. Physical Review A, 56(2), R1095–R1098. https://doi.org/10.1103/physreva.56.r1095 Gardner, J. R., Marable, M. L., Welch, G. R., & Thomas, J. E. (1993). Suboptical wavelength position measurement of moving atoms using optical fields. Physical Review Letters, 70(22), 3404–3407. https://doi.org/10.1103/physrevlett.70.3404