@article{perez_smeltz_sommer_boyle_ison_2017, title={Cationic rhenium ((III)) complexes: synthesis, characterization, and reactivity for hydrosilylation of aldehydes}, volume={46}, DOI={10.1039/c7dt00271h}, abstractNote={Cationic Re(iii) complexes are shown to be more active for the catalytic hydrosilylation of benzaldehydes than their neutral acetate precursors.}, number={14}, journal={Dalton Transactions (Cambridge, England : 2003)}, author={Perez, D. E. and Smeltz, J. L. and Sommer, Roger D. and Boyle, P. D. and Ison, E. A.}, year={2017}, pages={4609–4616} } @article{robbins_lilly_smeltz_boyle_ison_2015, title={Synthesis and Reactivity of Oxorhenium(V) Methyl, Benzyl, and Phenyl Complexes with CO: Implications for a Unique Mechanism for Migratory Insertion}, volume={34}, ISSN={["1520-6041"]}, DOI={10.1021/acs.organomet.5b00177}, abstractNote={The complexes [(DAAm)Re(O)(R)] [DAAm = N,N-bis(2-arylaminoethyl)methylamine; aryl = C6F5], 1, R = Me; 3a–d (R = benzyl, a; 4-methylbenzyl, b; 4-fluorobenzyl, c; 4-methoxybenzyl, d); and 4, R = Ph, were synthesized. CO insertion into the Re–R bond in 1 and 3a–d resulted in the formation of the acetyl complex, 2, and the (aryl)acetyl complexes, 5a–d respectively. The formation of 5a–d proceeded at a faster rate (7 h) than the formation of 2 (72 h) under the same conditions. No reaction was observed however for the phenyl complex 4 with CO. Kinetics for CO insertion into the various Re–R bonds were examined, and the experimental rate law was determined to be Rate = kobs[Re][CO]. The activation parameters for CO insertion into 1 and 3a were determined to be ΔG⧧(298 K) = 24(1). The enthalpy of activation ΔH⧧ was determined to be 9(1) and 10(3) kcal/mol for 1 and 3a, respectively, and the entropy of activation, ΔS⧧, was −49(2) and −36(4) cal/mol·K. Computational studies (M06) are consistent with the hypothesis ...}, number={13}, journal={ORGANOMETALLICS}, author={Robbins, Leanna K. and Lilly, Cassandra P. and Smeltz, Jessica L. and Boyle, Paul D. and Ison, Elon A.}, year={2015}, month={Jul}, pages={3152–3158} } @article{liu_senocak_smeltz_yang_wegenhart_yi_kenttaemaa_ison_abu-omar_2013, title={Mechanism of MTO-Catalyzed Deoxydehydration of Diols to Alkenes Using Sacrificial Alcohols}, volume={32}, ISSN={["1520-6041"]}, DOI={10.1021/om400127z}, abstractNote={Catalytic deoxydehydration (DODH) of vicinal diols is carried out employing methyltrioxorhenium (MTO) as the catalyst and a sacrificial alcohol as the reducing agent. The reaction kinetics feature an induction period when MTO is added last and show zero-order in [diol] and half-order dependence on [catalyst]. The rate-determining step involves reaction with alcohol, as evidenced by a KIE of 1.4 and a large negative entropy of activation (ΔS‡ = −154 ± 33 J mol–1 K–1). The active form of the catalyst is methyldioxorhenium(V) (MDO), which is formed by reduction of MTO by alcohol or via a novel C–C bond cleavage of an MTO-diolate complex. The majority of the MDO-diolate complex is present in dinuclear form, giving rise to the [Re]1/2 dependence. The MDO-diolate complex undergoes further reduction by alcohol in the rate-determining step to give rise to a putative rhenium(III) diolate. The latter is the active species in DODH extruding stereoselectively trans-stilbene from (R,R)-(+)-hydrobenzoin to regenerate M...}, number={11}, journal={ORGANOMETALLICS}, author={Liu, Shuo and Senocak, Aysegul and Smeltz, Jessica L. and Yang, Linan and Wegenhart, Benjamin and Yi, Jing and Kenttaemaa, Hilkka I. and Ison, Elon A. and Abu-Omar, Mandi M.}, year={2013}, month={Jun}, pages={3210–3219} } @article{smeltz_lilly_boyle_ison_2013, title={The Electronic Nature of Terminal Oxo Ligands in Transition-Metal Complexes: Ambiphilic Reactivity of Oxorhenium Species}, volume={135}, ISSN={["1520-5126"]}, DOI={10.1021/ja401390v}, abstractNote={The synthesis of the Lewis acid-base adducts of B(C6F5)3 and BF3 with [DAAmRe(O)(X)] DAAm = N,N-bis(2-arylaminoethyl)methylamine; aryl = C6F5 (X = Me, 1, COCH3, 2, Cl, 3) as well as their diamidopyridine (DAP) (DAP=(2,6-bis((mesitylamino)methyl)pyridine) analogues, [DAPRe(O)(X)] (X = Me, 4, Cl, 5, I, 6, and COCH3,7), are described. In these complexes the terminal oxo ligands act as nucleophiles. In addition we also show that stoichiometric reactions between 3 and triarylphosphine (PAr3) result in the formation of triarylphosphine oxide (OPAr3). The electronic dependence of this reaction was studied by comparing the rates of oxygen atom transfer for various para-substituted triaryl phosphines in the presence of CO. From these experiments a reaction constant ρ = -0.29 was obtained from the Hammett plot. This suggests that the oxygen atom transfer reaction is consistent with nucleophilic attack of phosphorus on an electrophilic metal oxo. To the best of our knowledge, these are the first examples of mono-oxo d(2) metal complexes in which the oxo ligand exhibits ambiphilic reactivity.}, number={25}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, author={Smeltz, Jessica L. and Lilly, Cassandra P. and Boyle, Paul D. and Ison, Elon A.}, year={2013}, month={Jun}, pages={9433–9441} } @article{smeltz_webster_ison_2012, title={Computational Investigation of the Mechanism for the Activation of CO by Oxorhenium Complexes}, volume={31}, ISSN={["0276-7333"]}, DOI={10.1021/om3003366}, abstractNote={In this paper a computational analysis (B3PW91) of the previously reported reaction of (O)Re(Me)(DAAm) (1; DAAm = N,N-bis(2-arylaminoethyl)methylamine, aryl = C6F5) with CO to produce (CO)Re(OAc)(DAAm) (2) is described. The data suggest that this transformation proceeds by two novel elementary steps that are of fundamental interest to the broader organometallic/inorganic community: (a) direct insertion of CO into the rhenium–methyl bond in 1 to yield the acyl intermediate (O)Re(Ac)(DAAm) (3) and (b) 1,2-migration, in the presence of CO, of the acyl fragment in 3 to the oxo ligand to yield 2. Evidence is provided for the first example of an insertion reaction where CO inserts directly into a M–R bond without prior formation of a CO adduct. In addition, it was shown that the addition of CO is necessary for the 1,2-migration of the acyl ligand. The data suggest that the addition of CO effectively weakens the Re–Cacyl bond in 3 and enables the facile migration of the acyl ligand.}, number={10}, journal={ORGANOMETALLICS}, author={Smeltz, Jessica L. and Webster, Charles Edwin and Ison, Elon A.}, year={2012}, month={May}, pages={4055–4062} } @article{smeltz_boyle_ison_2012, title={Role of Low-Valent Rhenium Species in Catalytic Hydrosilylation Reactions with Oxorhenium Catalysts}, volume={31}, ISSN={["0276-7333"]}, DOI={10.1021/om300654q}, abstractNote={The catalytic competency of a Re(III) complex has been demonstrated. In the presence of silane, oxorhenium(V) catalysts are deoxygenated to produce species that are significantly more active than t...}, number={17}, journal={ORGANOMETALLICS}, author={Smeltz, Jessica L. and Boyle, Paul D. and Ison, Elon A.}, year={2012}, month={Sep}, pages={5994–5997} } @article{smeltz_boyle_ison_2011, title={Mechanism for the Activation of Carbon Monoxide via Oxorhenium Complexes}, volume={133}, ISSN={["0002-7863"]}, DOI={10.1021/ja205477w}, abstractNote={Activation of CO by the rhenium(V) oxo complex [(DAAm)Re(O)(CH(3))] (1) [DAAm = N,N-bis(2-arylaminoethyl)methylamine; aryl = C(6)F(5), Mes] resulted in the isolation of the rhenium(III) acetate complex [(DAAm)Re(O(2)CCH(3))(CO)] (3). The mechanistic details of this reaction were explored experimentally. The novel oxorhenium(V) acyl intermediate [(DAAm)Re(O)(C(O)CH(3))] (2) was isolated, and its reactivity with CO was investigated. An unprecedented mechanism is proposed: CO is activated by the metal oxo complex 1 and inserted into the rhenium-methyl bond to yield acyl complex 2, after which subsequent migration of the acyl ligand to the metal oxo ligand yields acetate complex 3. X-ray crystal structures of 2 and 3 are reported.}, number={34}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, author={Smeltz, Jessica L. and Boyle, Paul D. and Ison, Elon A.}, year={2011}, month={Aug}, pages={13288–13291} }