@article{li_thomas_queiroz_decarolis_2020, title={Open Source Energy System Modeling Using Break-Even Costs to Inform State-Level Policy: A North Carolina Case Study}, volume={54}, ISSN={["1520-5851"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85078394675&partnerID=MN8TOARS}, DOI={10.1021/acs.est.9b04184}, abstractNote={Rigorous model-based analysis can help inform state-level energy and climate policy. In this study, we utilize an open-source energy system optimization model and publicly available datasets to examine future electricity generation, CO2 emissions, and CO2 abatement costs for the North Carolina electric power sector through 2050. Model scenarios include uncertainty in future fuel prices, a hypothetical CO2 cap, and an extended renewable portfolio standard. Across the modeled scenarios, solar photovoltaics represent the most cost-effective low-carbon technology, while trade-offs among carbon constrained scenarios largely involve natural gas and renewables. We also develop a new method to calculate break-even costs, which indicate the capital costs at which different technologies become cost-effective within the model. Significant variation in break-even costs are observed across different technologies and scenarios. We illustrate how break-even costs can be used to inform the development of an extended renewable portfolio standard in North Carolina. Utilizing the break-even costs to calibrate a tax credit for onshore wind, we find that the resultant wind deployment displaces other renewables, and thus has a negligible effect on CO2 emissions. Such insights can provide crucial guidance to policymakers weighing different policy options. This study provides an analytical framework to conduct similar analyses in other states using an open source model and freely available datasets.}, number={2}, journal={ENVIRONMENTAL SCIENCE & TECHNOLOGY}, author={Li, Binghui and Thomas, Jeffrey and Queiroz, Anderson Rodrigo and DeCarolis, Joseph F.}, year={2020}, month={Jan}, pages={665–676} } @inproceedings{sun_thomas_singh_li_baran_lubkeman_decarolis_queiroz_white_watts_et al._2017, title={Cost-benefit assessment challenges for a smart distribution system: A case study}, volume={2018-January}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85046337981&partnerID=MN8TOARS}, DOI={10.1109/pesgm.2017.8274167}, abstractNote={The FREEDM system is a technology for a smarter and resilient distribution system that facilitates a higher level of distributed energy resource (DER) integration by offering effective voltage regulation, reactive power compensation and real time monitoring and control. This paper provides a framework for conducting a cost-benefit analysis for such a smart distribution system. The method first identifies the benefits, and then quantifies and monetizes them. OpenDSS time-series based power flow simulation is used to quantify the benefits accurately. The costs associated with the new components of the system are estimated based on prototype units. A cost-benefit analysis is adopted to identify the scenarios where employing such a system by a utility becomes economically attractive.}, booktitle={2017 ieee power & energy society general meeting}, author={Sun, L. S. and Thomas, J. and Singh, S. and Li, D. X. and Baran, M. and Lubkeman, David and DeCarolis, J. and Queiroz, A. R. and White, L. and Watts, S. and et al.}, year={2017}, pages={1–5} }