@article{vitchuli_shi_nowak_nawalakhe_sieber_bourham_zhang_mccord_2013, title={Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric}, volume={27}, ISSN={["0169-4243"]}, url={https://publons.com/publon/7178346/}, DOI={10.1080/01694243.2012.727164}, abstractNote={Nylon 6 electrospun nanofibers were deposited on plasma-pretreated woven fabric substrates with the objective of improving adhesion between them. The prepared samples were evaluated for adhesion strength and durability of nanofiber mats by carrying out peel strength, flex resistance, and abrasion resistance tests. The test results showed significant improvement in the adhesion of nanofiber mats on woven fabric substrates due to atmospheric plasma pretreatment. The samples also exhibited good flex and abrasion resistance characteristics. X-ray photoelectron spectroscopy and water contact angle analyses indicate that plasma pretreatment introduces radicals, increases the oxygen content on the substrate surface, and leads to formation of active chemical sites that may be responsible for enhanced cross-linking between the substrate fabric and the electrospun nanofibers, which in turn increases the adhesion properties. The work demonstrates that the plasma treatment of the substrate fabric prior to deposition of electrospun nanofiber mats is a promising method to prepare durable functional materials.}, number={8}, journal={JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY}, author={Vitchuli, Narendiran and Shi, Quan and Nowak, Joshua and Nawalakhe, Rupesh and Sieber, Michael and Bourham, Mohamed and Zhang, Xiangwu and McCord, Marian}, year={2013}, month={Apr}, pages={924–938} } @article{stano_chapla_carroll_nowak_mccord_bradford_2013, title={Copper-Encapsulated Vertically Aligned Carbon Nanotube Arrays}, volume={5}, ISSN={1944-8244 1944-8252}, url={http://dx.doi.org/10.1021/am402964e}, DOI={10.1021/am402964e}, abstractNote={A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.}, number={21}, journal={ACS Applied Materials & Interfaces}, publisher={American Chemical Society (ACS)}, author={Stano, Kelly L. and Chapla, Rachel and Carroll, Murphy and Nowak, Joshua and McCord, Marian and Bradford, Philip D.}, year={2013}, month={Oct}, pages={10774–10781} } @article{shi_vitchuli_nowak_jiang_caldwell_breidt_bourham_zhang_mccord_2012, title={Multifunctional and durable nanofiber-fabric-layered composite for protective application}, volume={128}, ISSN={0021-8995}, url={http://dx.doi.org/10.1002/app.38465}, DOI={10.1002/app.38465}, abstractNote={Abstract}, number={2}, journal={Journal of Applied Polymer Science}, publisher={Wiley}, author={Shi, Quan and Vitchuli, Narendiran and Nowak, Joshua and Jiang, Shan and Caldwell, Jane M. and Breidt, Frederick and Bourham, Mohamed and Zhang, Xiangwu and McCord, Marian}, year={2012}, month={Sep}, pages={1219–1226} } @article{vitchuli_shi_nowak_nawalakhe_sieber_bourham_mccord_zhang_2012, title={Plasma-Electrospinning Hybrid Process and Plasma Pretreatment to Improve Adhesive Properties of Nanofibers on Fabric Surface}, volume={32}, ISSN={["1572-8986"]}, url={https://publons.com/publon/7178354/}, DOI={10.1007/s11090-011-9341-0}, number={2}, journal={PLASMA CHEMISTRY AND PLASMA PROCESSING}, author={Vitchuli, Narendiran and Shi, Quan and Nowak, Joshua and Nawalakhe, Rupesh and Sieber, Michael and Bourham, Mohamed and McCord, Marian and Zhang, Xiangwu}, year={2012}, month={Apr}, pages={275–291} } @article{shi_vitchuli_nowak_lin_guo_mccord_bourham_zhang_2011, title={Atmospheric Plasma Treatment of Pre-Electrospinning Polymer Solution: A Feasible Method to Improve Electrospinnability}, volume={49}, ISSN={["1099-0488"]}, url={https://publons.com/publon/3117880/}, DOI={10.1002/polb.22157}, abstractNote={Abstract}, number={2}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Shi, Quan and Vitchuli, Narendiran and Nowak, Joshua and Lin, Zhan and Guo, Bingkun and McCord, Marian and Bourham, Mohamed and Zhang, Xiangwu}, year={2011}, month={Jan}, pages={115–122} } @article{shi_vitchuli_nowak_caldwell_breidt_bourham_zhang_mccord_2011, title={Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning}, volume={47}, ISSN={["1873-1945"]}, url={https://publons.com/publon/3117884/}, DOI={10.1016/j.eurpolymj.2011.04.002}, abstractNote={Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the AgNO3 precursor in pre-electrospinning solutions into metallic silver nanoparticles, followed by electrospinning into continuous and smooth nanofibers with Ag nanoparticles embedded in the matrix. SEM, TEM, and EDX spectra were used to study the structure and surface elemental composition of the nanofibers. Silver nanoparticles, with diameters ranging between 3 and 6 nm, were found to be uniformly dispersed in the nanofiber matrix. The Ag/PAN nanofibers exhibited slow and long-lasting silver ion release, which provided robust antibacterial activity against both Gram-positive Bacillus cereus and Gram-negative Escherichia coli microorganisms.}, number={7}, journal={EUROPEAN POLYMER JOURNAL}, author={Shi, Quan and Vitchuli, Narendiran and Nowak, Joshua and Caldwell, Jane M. and Breidt, Frederick and Bourham, Mohamed and Zhang, Xiangwu and McCord, Marian}, year={2011}, month={Jul}, pages={1402–1409} } @article{vitchuli_shi_nowak_kay_caldwell_breidt_bourham_mccord_zhang_2011, title={Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications}, volume={12}, ISSN={["1468-6996"]}, url={https://publons.com/publon/3117882/}, DOI={10.1088/1468-6996/12/5/055004}, abstractNote={Abstract ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning–electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99%) against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95%) against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning–electrospraying hybrid process are promising material candidates for protective applications.}, number={5}, journal={SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS}, author={Vitchuli, Narendiran and Shi, Quan and Nowak, Joshua and Kay, Kathryn and Caldwell, Jane M. and Breidt, Frederick and Bourham, Mohamed and McCord, Marian and Zhang, Xiangwu}, year={2011}, month={Oct} } @article{shi_vitchuli_ji_nowak_mccord_bourham_zhang_2010, title={A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate}, volume={120}, ISSN={0021-8995}, url={http://dx.doi.org/10.1002/app.33161}, DOI={10.1002/app.33161}, abstractNote={Abstract}, number={1}, journal={Journal of Applied Polymer Science}, publisher={Wiley}, author={Shi, Quan and Vitchuli, Narendiran and Ji, Liwen and Nowak, Joshua and McCord, Marian and Bourham, Mohamed and Zhang, Xiangwu}, year={2010}, month={Oct}, pages={425–433} }