Jennie Si Zhang, Q., Si, J., Tu, X., Li, M., Lewek, M. D., & Huang, H. (2024, September 19). Toward Task-Independent Optimal Adaptive Control of a Hip Exoskeleton for Locomotion Assistance in Neurorehabilitation. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, Vol. 9. https://doi.org/10.1109/TSMC.2024.3454556 Alili, A., Nalam, V., Li, M., Liu, M., Feng, J., Si, J., & Huang, H. (2023). A Novel Framework to Facilitate User Preferred Tuning for a Robotic Knee Prosthesis. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 31, 895–903. https://doi.org/10.1109/TNSRE.2023.3236217 Li, M., Liu, W., Si, J., Stallrich, J. W., & Huang, H. (2023). Hierarchical Optimization for Control of Robotic Knee Prostheses Toward Improved Symmetry of Propulsive Impulse. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 70(5), 1634–1642. https://doi.org/10.1109/TBME.2022.3224026 Liu, W., Zhong, J., Wu, R., Fylstra, B. L., Si, J., & Huang, H. (2022). Inferring Human-Robot Performance Objectives During Locomotion Using Inverse Reinforcement Learning and Inverse Optimal Control. IEEE ROBOTICS AND AUTOMATION LETTERS, 7(2), 2549–2556. https://doi.org/10.1109/LRA.2022.3143579 Gao, X., Si, J., Wen, Y., Li, M., & Huang, H. (2021, May 6). Reinforcement Learning Control of Robotic Knee With Human-in-the-Loop by Flexible Policy Iteration. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Vol. 5. https://doi.org/10.1109/TNNLS.2021.3071727 Wu, R., Li, M., Yao, Z., Liu, W., Si, J., & Huang, H. (2022). Reinforcement Learning Impedance Control of a Robotic Prosthesis to Coordinate With Human Intact Knee Motion. IEEE ROBOTICS AND AUTOMATION LETTERS, 7(3), 7014–7020. https://doi.org/10.1109/LRA.2022.3179420 Wu, R., Yao, Z., Si, J., & Huang, H. H. (2022). Robotic Knee Tracking Control to Mimic the Intact Human Knee Profile Based on Actor-Critic Reinforcement Learning. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 9(1), 19–30. https://doi.org/10.1109/JAS.2021.1004272 Huang, H., Si, J., Brandt, A., & Li, M. (2021). Taking both sides: seeking symbiosis between intelligent prostheses and human motor control during locomotion. CURRENT OPINION IN BIOMEDICAL ENGINEERING, 20. https://doi.org/10.1016/j.cobme.2021.100314 Li, M., Wen, Y., Gao, X., Si, J., & Huang, H. (2021, May 26). Toward Expedited Impedance Tuning of a Robotic Prosthesis for Personalized Gait Assistance by Reinforcement Learning Control. IEEE TRANSACTIONS ON ROBOTICS, Vol. 5. https://doi.org/10.1109/TRO.2021.3078317 Alili, A., Nalam, V., Li, M., Liu, M., Si, J., & Huang, H. (2021). User Controlled Interface for Tuning Robotic Knee Prosthesis. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), pp. 6190–6195. https://doi.org/10.1109/IROS51168.2021.9636264 Wen, Y., Li, M., Si, J., & Huang, H. (2020). Wearer-Prosthesis Interaction for Symmetrical Gait: A Study Enabled by Reinforcement Learning Prosthesis Control. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 28(4), 904–913. https://doi.org/10.1109/TNSRE.2020.2979033