@article{mccall_hu_kamper_2022, title={Exploring Kinetic and Kinematic Finger Individuation Capability in Children With Hemiplegic Cerebral Palsy}, ISSN={["1558-688X"]}, DOI={10.1177/00315125221145220}, abstractNote={While fine manual dexterity develops over time, the extent to which children show independent control of their digits in each hand and the impact of perinatal brain injury on this individuation have not been well quantified. Our goal in this study was to assess and compare finger force and movement individuation in 8–14 year old children with hemiplegic cerebral palsy (hCP; n = 4) and their typically developing peers (TD; n = 10). We evaluated finger force individuation with five independent load cells and captured joint movement individuation with video tracking. We observed no significant differences in individuation indices between the dominant and non-dominant hands of TD children, but individuated force and movement were substantially reduced in the paretic versus non paretic hands of children with hCP ( p < 0.001). In TD participants, the thumb tended to have the greatest level of independent control. This small sample of children with hCP showed substantial loss of individuation in the paretic hand and some deficits in the non-paretic hand, suggesting possible benefit from targeted training of digit independence in both hands for children with CP.}, journal={PERCEPTUAL AND MOTOR SKILLS}, author={McCall, James V. and Hu, Xiaogang and Kamper, Derek G.}, year={2022}, month={Dec} } @misc{mccall_ludovice_elliott_kamper_2022, title={Hand function development of children with hemiplegic cerebral palsy: A scoping review}, volume={15}, ISSN={["1875-8894"]}, DOI={10.3233/PRM-200714}, abstractNote={PURPOSE: Hemiplegic cerebral palsy (hCP) typically impacts sensorimotor control of the hand, but comprehensive assessments of the hands of children with hCP are relatively rare. This scoping review summarizes the development of hand function for children with hCP. METHODS: This scoping review focused on the development of hand function in children with hCP. Electronic databases (PubMed, PEDro, Web of Science, CINAHL, and SpringerLink) were searched to identify studies assessing hand function in children with hCP. The search was performed using keywords (e.g., “hemiplegia”). An iterative approach verified by two authors was used to select the studies. Articles which reported quantitative data for children with hCP on any items of a specified set of hand evaluations were included. Measures were sorted into three categories: quantitative neuromechanics, clinical assessments, and clinical functional evaluations. RESULTS: Initial searches returned 1536 articles, 131 of which were included in the final review. Trends between assessment scores and age were examined for both hands. CONCLUSION: While several studies have evaluated hand function in children with hCP, the majority relied on clinical scales, assessments, or qualitative descriptions. Further assessments of kinematics, kinetics, and muscle activation patterns are needed to identify the underlying impairment mechanisms that should be targeted for treatment.}, number={1}, journal={JOURNAL OF PEDIATRIC REHABILITATION MEDICINE}, author={McCall, James V and Ludovice, Miranda C. and Elliott, Catherine and Kamper, Derek G.}, year={2022}, pages={211–228} } @article{mccall_kamper_2021, title={High Compliance Pneumatic Actuators to Promote Finger Extension in Stroke Survivors}, ISSN={["1558-4615"]}, DOI={10.1109/EMBC46164.2021.9629782}, abstractNote={Compliant pneumatic systems are well suited for wearable robotic applications. The actuators are lightweight, conformable to irregular shapes, and tolerant of uncontrolled degrees of freedom. These attributes are especially desirable for hand exoskeletons given their space and mass constraints. Creating active digit extension with these exoskeletons is especially critical for clinical populations such as stroke survivors who often have great difficulty opening their paretic hand. To achieve active digit extension with a soft actuator, we have created pneumatic chambers that lie along the palmar surface of the digits. These chambers can directly extend the digits when pressurized. We present a characterization of the extension force and passive flexion resistance generated by these pneumatic chambers across a range of joint angles as a function of cross-sectional shape, dimension, and wall thickness. The chambers were fabricated out of DragonSkin 20 using custom molds and were tested on a custom jig. Extension forces created at the end of the chamber (where fingertip contact would occur) exceeded 3.00 N at relatively low pressure (48.3 kPa). A rectangular cross-section generated higher extension force than a semi-obround cross-sectional shape. Extension force was significantly higher (p < 0.05) for actuators with the highest wall thickness compared to those with the thinnest walls. In comparison to previously used polyurethane actuators, the DragonSkin actuators had a much higher extension force for a similar passive bending resistance. Passive bending resistance of the chamber (simulating finger flexion) did not vary significantly with actuator shape, wall thickness, width, or depth. The flexion resistance, however, could be significantly reduced by applying a vacuum. These results provide guidance in designing pneumatic actuators for assisting finger extension and resisting unwanted flexion in the fingers.}, journal={2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)}, author={McCall, James V and Kamper, Derek G.}, year={2021}, pages={4588–4591} } @article{shafer_philius_nuckols_mccall_young_sawicki_2021, title={Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study}, volume={9}, ISSN={["2296-4185"]}, DOI={10.3389/fbioe.2021.615358}, abstractNote={Powered ankle exoskeletons that apply assistive torques with optimized timing and magnitude can reduce metabolic cost by ∼10% compared to normal walking. However, finding individualized optimal control parameters is time consuming and must be done independently for different walking modes (e.g., speeds, slopes). Thus, there is a need for exoskeleton controllers that are capable of continuously adapting torque assistance in concert with changing locomotor demands. One option is to use a biologically inspired, model-based control scheme that can capture the adaptive behavior of the human plantarflexors during natural gait. Here, based on previously demonstrated success in a powered ankle-foot prosthesis, we developed an ankle exoskeleton controller that uses a neuromuscular model (NMM) comprised of a Hill type musculotendon driven by a simple positive force feedback reflex loop. To examine the effects of NMM reflex parameter settings on (i) ankle exoskeleton mechanical performance and (ii) users’ physiological response, we recruited nine healthy, young adults to walk on a treadmill at a fixed speed of 1.25 m/s while donning bilateral tethered robotic ankle exoskeletons. To quantify exoskeleton mechanics, we measured exoskeleton torque and power output across a range of NMM controller Gain (0.8–2.0) and Delay (10–40 ms) settings, as well as a High Gain/High Delay (2.0/40 ms) combination. To quantify users’ physiological response, we compared joint kinematics and kinetics, ankle muscle electromyography and metabolic rate between powered and unpowered/zero-torque conditions. Increasing NMM controller reflex Gain caused increases in average ankle exoskeleton torque and net power output, while increasing NMM controller reflex Delay caused a decrease in net ankle exoskeleton power output. Despite systematic reduction in users’ average biological ankle moment with exoskeleton mechanical assistance, we found no NMM controller Gain or Delay settings that yielded changes in metabolic rate. Post hoc analyses revealed weak association at best between exoskeleton and biological mechanics and changes in users’ metabolic rate. Instead, changes in users’ summed ankle joint muscle activity with powered assistance correlated with changes in their metabolic energy use, highlighting the potential to utilize muscle electromyography as a target for on-line optimization in next generation adaptive exoskeleton controllers.}, journal={FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY}, author={Shafer, Benjamin A. and Philius, Sasha A. and Nuckols, Richard W. and McCall, James and Young, Aaron J. and Sawicki, Gregory S.}, year={2021}, month={Apr} }