@article{mitasova_harmon_weaver_lyons_overton_2012, title={Scientific visualization of landscapes and landforms}, volume={137}, ISSN={["1872-695X"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-82455187995&partnerID=MN8TOARS}, DOI={10.1016/j.geomorph.2010.09.033}, abstractNote={Scientific visualization of geospatial data provides highly effective tools for analysis and communication of information about the land surface and its features, properties, and temporal evolution. Whereas single-surface visualization of landscapes is now routinely used in presentation of Earth surface data, interactive 3D visualization based upon multiple elevation surfaces and cutting planes is gaining recognition as a powerful tool for analyzing landscape structure based on multiple return Light Detection and Ranging (LiDAR) data. This approach also provides valuable insights into land surface changes captured by multi-temporal elevation models. Thus, animations using 2D images and 3D views are becoming essential for communicating results of landscape monitoring and computer simulations of Earth processes. Multiple surfaces and 3D animations are also used to introduce novel concepts for visual analysis of terrain models derived from time-series of LiDAR data using multi-year core and envelope surfaces. Analysis of terrain evolution using voxel models and visualization of contour evolution using isosurfaces has potential for unique insights into geometric properties of rapidly evolving coastal landscapes. In addition to visualization on desktop computers, the coupling of GIS with new types of graphics hardware systems provides opportunities for cutting-edge applications of visualization for geomorphological research. These systems include tangible environments that facilitate intuitive 3D perception, interaction and collaboration. Application of the presented visualization techniques as supporting tools for analyses of landform evolution using airborne LiDAR data and open source geospatial software is illustrated by two case studies from North Carolina, USA.}, number={1}, journal={GEOMORPHOLOGY}, author={Mitasova, Helena and Harmon, Russell S. and Weaver, Katherine J. and Lyons, Nathan J. and Overton, Margery F.}, year={2012}, month={Jan}, pages={122–137} } @article{starek_mitasova_hardin_weaver_overton_harmon_2011, title={Modeling and analysis of landscape evolution using airborne, terrestrial, and laboratory laser scanning}, volume={7}, ISSN={["1553-040X"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84858779393&partnerID=MN8TOARS}, DOI={10.1130/ges00699.1}, abstractNote={Current laser scanning (Lidar, light detection and ranging) technologies span a wide range of survey extent and resolutions, from regional airborne Lidar mapping and terrestrial Lidar field surveys to laboratory systems utilizing indoor three-dimensional (3D) laser scanners. Proliferation in Lidar technology and data collection enables new approaches for monitoring and analysis of landscape evolution. For example, repeat Lidar surveys that generate a time series of point cloud data provide an opportunity to transition from traditional, static representations of topography to terrain abstraction as a 3D dynamic layer. Three case studies are presented to illustrate novel techniques for landscape evolution analysis based on time series of Lidar data: (1) application of multiyear airborne Lidar surveys to a study of a dynamic coastal region, where the change is driven by eolian sediment transport, wave-induced beach erosion, and human intervention; (2) monitoring of vegetation growth and the impact of landscape structure on overland flow in an agricultural field using terrestrial laser scanning; and (3) investigation of landscape design impacts on overland water flow and other physical processes using a tangible geospatial modeling system. The presented studies demonstrate new insights into landscape evolution in different environments that can be gained from Lidar scanning spanning 1.0–0.001 m resolutions with geographic information system analysis capabilities.}, number={6}, journal={GEOSPHERE}, author={Starek, Michael J. and Mitasova, Helena and Hardin, Eric and Weaver, Katherine and Overton, Margery and Harmon, Russell S.}, year={2011}, month={Dec}, pages={1340–1356} } @article{tateosian_mitasova_harmon_fogleman_weaver_harmon_2010, title={TanGeoMS: Tangible Geospatial Modeling System}, volume={16}, ISSN={["1941-0506"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-78149238565&partnerID=MN8TOARS}, DOI={10.1109/tvcg.2010.202}, abstractNote={We present TanGeoMS, a tangible geospatial modeling visualization system that couples a laser scanner, projector, and a flexible physical three-dimensional model with a standard geospatial information system (GIS) to create a tangible user interface for terrain data. TanGeoMS projects an image of real-world data onto a physical terrain model. Users can alter the topography of the model by modifying the clay surface or placing additional objects on the surface. The modified model is captured by an overhead laser scanner then imported into a GIS for analysis and simulation of real-world processes. The results are projected back onto the surface of the model providing feedback on the impact of the modifications on terrain parameters and simulated processes. Interaction with a physical model is highly intuitive, allowing users to base initial design decisions on geospatial data, test the impact of these decisions in GIS simulations, and use the feedback to improve their design. We demonstrate the system on three applications: investigating runoff management within a watershed, assessing the impact of storm surge on barrier islands, and exploring landscape rehabilitation in military training areas.}, number={6}, journal={IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS}, author={Tateosian, Laura G. and Mitasova, Helena and Harmon, Brendan A. and Fogleman, Brent and Weaver, Katherine and Harmon, Russel S.}, year={2010}, pages={1605–1612} }