@article{gaffney_fisher_freytes_2023, title={Tendon Extracellular Matrix Promotes Myotendinous Junction Protein Expression in Engineered Muscle Tissue under Both Static and Mechanically Stimulated Culture Conditions}, volume={2023}, ISSN={["1932-7005"]}, DOI={10.1155/2023/6658543}, abstractNote={Studying the crosstalk between the muscle and tendon tissue is an important yet understudied area in musculoskeletal research. In vitro models can help elucidate the function and repair of the myotendinous junction (MTJ) under static and dynamic culture conditions using engineered muscle tissues. The goal of this study was to culture engineered muscle tissues in a novel bioreactor in both static and mechanically stimulated cultures and evaluate the expression of MTJ-specific proteins within the muscle-tendon unit(paxillin and type XXII collagen). C2C12 myoblasts were seeded in hydrogels made from type I collagen ortendon-derived extracellular matrix (tECM) and allowed to form around movable anchors. Engineered tissues were allowed to form and stabilize for 10 days. After 10 days in the culture, stimulated cultures were cyclically stimulated for 3 hours per day for 2 and 4 weeks alongside static cultures. Strain values at the maximum displacement of the anchors averaged about 0.10, a target that has been shown to induce myogenic phenotype in C2C12s. Protein expression of paxillin after 2 weeks did not differ between hydrogel materials in static cultures but increased by 62% in tECM when mechanically stimulated. These differences continued after 4 weeks, with 31% and 57% increases in tECM tissues relative to type I collagen. Expression of type XXII collagen was similarly influenced by hydrogel material and culture conditions. Overall, this research combined a relevant microenvironment to study muscle and tendon interactions with a novel bioreactor to apply mechanical strain, an important regulator of the formation and maintenance of the native MTJ.}, journal={JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE}, author={Gaffney, Lewis S. and Fisher, Matthew B. and Freytes, Donald O.}, year={2023}, month={Aug} } @article{detwiler_polkoff_gaffney_freytes_piedrahita_2022, title={Donor Age and Time in Culture Affect Dermal Fibroblast Contraction in an In Vitro Hydrogel Model}, volume={8}, ISSN={["1937-335X"]}, DOI={10.1089/ten.tea.2021.0217}, abstractNote={Current cellular hydrogel-based skin grafts composed of human dermal fibroblasts and a hydrogel scaffold tend to minimize contraction of full-thickness skin wounds and support skin regeneration. However, there has been no comparison between the sources of the dermal fibroblast used. Products using human adult or neonatal foreskin dermal fibroblasts are often expanded in vitro and used after multiple passages without a clear understanding of the effects of this initial production step on the quality and reproducibility of the cellular behavior. Based on the known effects of 2D tissue culture expansion on cellular proliferation and gene expression, we hypothesized that differences in donor age and time in culture may influence cellular properties and contractile behavior in a fibroblast-populated collagen matrix. Using porcine skin as a model based on its similarity to human skin in structure and wound healing properties, we isolated porcine dermal fibroblasts of three different donor ages for use in a 2D proliferation assay and in a 3D cell-populated collagen matrix contractility assay. In 2D cell culture, doubling time remained relatively consistent between all age groups from passage 1 to 6. In the contractility assays, fetal and neonatal groups contracted faster and generated more contractile force than the adult group at passage 1 in vitro. However, after five passages in culture, there was no difference in contractility between ages. These results show how cellular responses in a hydrogel scaffold differ based on donor age and time in culture in vitro, and suggest that consistency in the cellular component of bioengineered skin products could be beneficial in the biomanufacturing of consistent, reliable skin grafts and graft in vivo models. Future research and therapies using bioengineered skin grafts should consider how results may vary based on donor age and time in culture before seeding.}, journal={TISSUE ENGINEERING PART A}, author={Detwiler, Amber and Polkoff, Kathryn and Gaffney, Lewis and Freytes, Donald O. and Piedrahita, Jorge A.}, year={2022}, month={Aug} } @article{chiu_duffy_chang_gaffney_fisher_2021, title={Ex vivo evaluation of novel core tenorrhaphy patterns in dogs}, ISSN={["1532-950X"]}, DOI={10.1111/vsu.13678}, abstractNote={Abstract}, journal={VETERINARY SURGERY}, author={Chiu, King Wa and Duffy, Daniel J. and Chang, Yi-Jen and Gaffney, Lewis and Fisher, Matthew B.}, year={2021}, month={Jul} } @article{gaffney_davis_mora-navarro_fisher_freytes_2021, title={Extracellular Matrix Hydrogels Promote Expression of Muscle-Tendon Junction Proteins}, volume={11}, ISSN={["1937-335X"]}, DOI={10.1089/ten.tea.2021.0070}, abstractNote={Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue, resulting in junction-specific features. The ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue-specific pre-hydrogel digests. The ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities that were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. The ECM conditioned media had only a minor effect on the upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with a varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, another junction marker, type XXII collagen, had similar expression patterns as paxillin, with smaller effect sizes. Using tissue-specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of myotendinous junction-specific proteins. Impact statement The muscle-tendon junction is an important feature of muscle-tendon units; however, despite crosstalk between the two tissue types, the junction is often overlooked in current research. Deconstructing the cell-matrix interactions will provide the opportunity to study significant junction-specific features and markers that should be included in tissue models of the muscle-tendon unit, while gaining a deeper understanding of the natural junction. This research aims at informing future methods to engineer a more relevant multi-tissue platform to study the muscle-tendon unit.}, journal={TISSUE ENGINEERING PART A}, author={Gaffney, Lewis S. and Davis, Zachary G. and Mora-Navarro, Camilo and Fisher, Matthew B. and Freytes, Donald O.}, year={2021}, month={Nov} } @article{duffy_curcillo_chang_gaffney_fisher_moore_2020, title={Biomechanical evaluation of an autologous flexor digitorum lateralis graft to augment the surgical repair of gastrocnemius tendon laceration in a canine ex vivo model}, volume={49}, ISSN={["1532-950X"]}, DOI={10.1111/vsu.13453}, abstractNote={Abstract}, number={8}, journal={VETERINARY SURGERY}, author={Duffy, Daniel J. and Curcillo, Chiara P. and Chang, Yi-Jen and Gaffney, Lewis and Fisher, Matthew B. and Moore, George E.}, year={2020}, month={Dec}, pages={1545–1554} } @article{eby_duffy_chang_gaffney_fisher_moore_2020, title={Influence of barbed epitendinous suture combined with a core locking-loop sutures to repair experimental flexor tendon lacerations}, volume={49}, ISSN={["1532-950X"]}, DOI={10.1111/vsu.13496}, abstractNote={Abstract}, number={8}, journal={VETERINARY SURGERY}, author={Eby, Adam C. and Duffy, Daniel J. and Chang, Yi-Jen and Gaffney, Lewis and Fisher, Matthew B. and Moore, George E.}, year={2020}, month={Dec}, pages={1590–1599} } @article{day_schneible_young_pozdin_driessche_gaffney_prodromou_freytes_fourches_daniele_et al._2020, title={Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides}, volume={8}, ISSN={["2050-7518"]}, DOI={10.1039/d0tb01189d}, abstractNote={Light-controlled switching of cell-binding activity of fluorescently-labeled peptides for on-demand cell labeling.}, number={33}, journal={JOURNAL OF MATERIALS CHEMISTRY B}, author={Day, Kevin and Schneible, John D. and Young, Ashlyn T. and Pozdin, Vladimir A. and Driessche, George and Gaffney, Lewis A. and Prodromou, Raphael and Freytes, Donald O. and Fourches, Denis and Daniele, Michael and et al.}, year={2020}, month={Sep}, pages={7413–7427} } @article{duffy_chang_gaffney_fisher_moore_2019, title={Effect of bite depth of an epitendinous suture on the biomechanical strength of repaired canine flexor tendons}, volume={80}, ISSN={["1943-5681"]}, DOI={10.2460/ajvr.80.11.1043}, abstractNote={Abstract}, number={11}, journal={AMERICAN JOURNAL OF VETERINARY RESEARCH}, author={Duffy, Daniel J. and Chang, Yi-Jen and Gaffney, Lewis S. and Fisher, Matthew B. and Moore, George E.}, year={2019}, month={Nov}, pages={1043–1049} } @article{nandi_sproul_nellenbach_erb_gaffney_freytes_brown_2019, title={Platelet-like particles dynamically stiffen fibrin matrices and improve wound healing outcomes}, volume={7}, ISSN={2047-4830 2047-4849}, url={http://dx.doi.org/10.1039/C8BM01201F}, DOI={10.1039/c8bm01201f}, abstractNote={PLPs increase fibrin stiffness, promote cell migration, and improve healing outcomes.}, number={2}, journal={Biomaterials Science}, publisher={Royal Society of Chemistry (RSC)}, author={Nandi, Seema and Sproul, Erin P. and Nellenbach, Kimberly and Erb, Mary and Gaffney, Lewis and Freytes, Donald O. and Brown, Ashley C.}, year={2019}, pages={669–682} } @misc{gaffney_wrona_freytes_2018, title={Potential Synergistic Effects of Stem Cells and Extracellular Matrix Scaffolds}, volume={4}, ISSN={["2373-9878"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85045213284&partnerID=MN8TOARS}, DOI={10.1021/acsbiomaterials.7b00083}, abstractNote={In recent years, extracellular matrix (ECM)-derived biomaterials have been used as scaffolds to help regenerate diseased or damaged tissues. These biomaterials are prepared by decellularization of a tissue of interest by chemical or physical removal of the cellular components. The goal of the decellularization process is to remove cells without disturbing tissue-specific composition, growth factor content, and, in some cases, the mechanical properties. As decellularization can be achieved without significantly affecting the native architecture of the tissue or organ of interest, it provides a scaffold material with native-like composition and structure. ECM scaffolds promote constructive remodeling through several mechanisms that include chemotactic properties, growth factor release, and modulation of the immune response. Constructive remodeling by ECM scaffolds relies, in part, on the recruitment of neighboring or circulating cells to the wound site. However, this is a relatively lengthy process, and the...}, number={4}, journal={ACS BIOMATERIALS SCIENCE & ENGINEERING}, author={Gaffney, Lewis and Wrona, Emily A. and Freytes, Donald O.}, year={2018}, month={Apr}, pages={1208–1222} } @article{gaffney_warren_wrona_fisher_freytes_2017, title={Macrophages' role in tissue disease and regeneration}, volume={62}, journal={Macrophages: origin, functions and biointervention}, author={Gaffney, L. and Warren, P. and Wrona, E. A. and Fisher, M. B. and Freytes, D. O.}, year={2017}, pages={245–271} }