@article{bang_bergman_li_mukherjee_alshehri_abbott_crook_velev_hall_you_2023, title={An integrated chemical engineering approach to understanding microplastics}, volume={1}, ISSN={["1547-5905"]}, DOI={10.1002/aic.18020}, abstractNote={Environmental and health risks posed by microplastics (MPs) have spurred numerous studies to better understand MPs' properties and behavior. Yet, we still lack a comprehensive understanding due to MP's heterogeneity in properties and complexity of plastic property evolution during aging processes. There is an urgent need to thoroughly understand the properties and behavior of MPs as there is increasing evidence of MPs' adverse health and environmental effects. In this perspective, we propose an integrated chemical engineering approach to improve our understanding of MPs. The approach merges artificial intelligence, theoretical methods, and experimental techniques to integrate existing data into models of MPs, investigate unknown features of MPs, and identify future areas of research. The breadth of chemical engineering, which spans biological, computational, and materials sciences, makes it well-suited to comprehensively characterize MPs. Ultimately, this perspective charts a path for cross-disciplinary collaborative research in chemical engineering to address the issue of MP pollution.}, journal={AICHE JOURNAL}, author={Bang, Rachel S. and Bergman, Michael and Li, Tianyu and Mukherjee, Fiona and Alshehri, Abdulelah S. and Abbott, Nicholas L. and Crook, Nathan C. and Velev, Orlin D. and Hall, Carol K. and You, Fengqi}, year={2023}, month={Jan} } @article{harris_sikes_bergman_goller_hasley_sjogren_ramirez_gordy_2022, title={Hands-on immunology: Engaging learners of all ages through tactile teaching tools}, volume={13}, ISSN={["1664-302X"]}, url={http://dx.doi.org/10.3389/fmicb.2022.966282}, DOI={10.3389/fmicb.2022.966282}, abstractNote={Ensuring the public has a fundamental understanding of human-microbe interactions, immune responses, and vaccines is a critical challenge in the midst of a pandemic. These topics are commonly taught in undergraduate- and graduate-level microbiology and immunology courses; however, creating engaging methods of teaching these complex concepts to students of all ages is necessary to keep younger students interested when science seems hard. Building on the Tactile Teaching Tools with Guided Inquiry Learning (TTT-GIL) method we used to create an interactive lac operon molecular puzzle, we report here two TTT-GIL activities designed to engage diverse learners from middle schoolers to masters students in exploring molecular interactions within the immune system. By pairing physical models with structured activities built on the constructivist framework of Process-Oriented Guided Inquiry Learning (POGIL), TTT-GIL activities guide learners through their interaction with the model, using the Learning Cycle to facilitate construction of new concepts. Moreover, TTT-GIL activities are designed utilizing Universal Design for Learning (UDL) principles to include all learners through multiple means of engagement, representation, and action. The TTT-GIL activities reported here include a web-enhanced activity designed to teach concepts related to antibody-epitope binding and specificity to deaf and hard-of-hearing middle and high school students in a remote setting and a team-based activity that simulates the evolution of the Major Histocompatibility Complex (MHC) haplotype of a population exposed to pathogens. These activities incorporate TTT-GIL to engage learners in the exploration of fundamental immunology concepts and can be adapted for use with learners of different levels and educational backgrounds.}, journal={FRONTIERS IN MICROBIOLOGY}, publisher={Frontiers Media SA}, author={Harris, Felix R. and Sikes, Michael L. and Bergman, Michael and Goller, Carlos C. and Hasley, Andrew O. and Sjogren, Caroline A. and Ramirez, Melissa V. and Gordy, Claire L.}, year={2022}, month={Aug} }