Works (1)

Updated: April 5th, 2024 12:39

2020 journal article

Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis

NATURE COMMUNICATIONS, 11(1).

By: P. Dinh n, D. Paudel n, H. Brochu n, K. Popowski n, M. Gracieux n, J. Cores n, K. Huang n, M. Hensley n ...

MeSH headings : Administration, Inhalation; Alveolar Epithelial Cells / drug effects; Alveolar Epithelial Cells / metabolism; Alveolar Epithelial Cells / pathology; Animals; Apoptosis / drug effects; Bleomycin / toxicity; Cell Proliferation; Disease Models, Animal; Exosomes / metabolism; Exosomes / transplantation; Humans; Idiopathic Pulmonary Fibrosis / chemically induced; Idiopathic Pulmonary Fibrosis / metabolism; Idiopathic Pulmonary Fibrosis / pathology; Idiopathic Pulmonary Fibrosis / therapy; Lung / cytology; Lung / metabolism; Lung Injury / chemically induced; Lung Injury / metabolism; Lung Injury / pathology; Lung Injury / therapy; Mesenchymal Stem Cells / metabolism; Mice; Myofibroblasts / cytology; Proteomics; Silicon Dioxide / toxicity; Spheroids, Cellular / metabolism
TL;DR: It is shown that the secretome and exosomes of lung spheroid cells is effective as inhalation treatment in rodent models of lung injury and fibrosis and superior to the counterparts derived from mesenchymal stem cells. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries, ORCID
Added: March 23, 2020

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.