@inproceedings{lin_dinh_sampath_akinci_2016, title={A Computational study of thin film dynamics on micro structured surfaces}, volume={2}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85002986155&partnerID=MN8TOARS}, DOI={10.1115/ht2016-7382}, abstractNote={The present study is motivated by interest in understanding of physical mechanisms that govern the effect of material and micro-structural characteristics of heat surface on boiling heat transfer and burnout at high heat fluxes. The effect was reported and investigated experimentally and analytically over several past decades. Only recently, with the advent of nanotechnology including microscale manufacturing, it becomes possible to perform high heat-flux boiling experiments with control of surface conditions.}, booktitle={Proceedings of the Asme Summer Heat Transfer Conference, 2016, vol 2}, author={Lin, L. Y. and Dinh, N. T. and Sampath, R. and Akinci, N.}, year={2016} }