Mary Elting From Tiny Yeast Mitotic Spindles to Giant Ultrafast Ciliate Myonemes: Using 'Destructive Testing' to Understand Cytoskeletal Mechanics. . (2024). Biophysical Society. Toward a biophysical understanding of ultrafast contraction by the unicellular ciliate Spirostomum ambiguum. (2024). Gordon Research Conference on Cytoskeletal Motors. Floyd, C., Molines, A. T., Lei, X., Honts, J. E., Chang, F., Elting, M. W., … Bhamla, M. S. (2023). A unified model for the dynamics of ATP-independent ultrafast contraction. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 120(25). https://doi.org/10.1073/pnas.2217737120 Destructive testing on mitotic machinery: probing the mechanics of fission yeast cell division by laser ablation. . (2023). Biophysical Society Annual Meeting. Begley, M. A., & Elting, M. W. (2023, February 6). Mitosis: Augmin-based bridges keep kinetochores in line. CURRENT BIOLOGY, Vol. 33, pp. R118–R121. https://doi.org/10.1016/j.cub.2022.12.037 Pushing the envelope: force balance between the mitotic spindle and nuclear envelope in closed and semi-open mitosis. (2023). Conference on the Mitotic Spindle: From living and synthetic systems to theory, Dubrovnik, Croatia. Pushing the envelope: force balance in closed mitosis. . (2023). International Pombe Meeting, Hiroshima, Japan. 8. Destructive testing of cell division machinery: lessons from laser ablation on closed and open mitosis. (2022). In Tuesday Evening Seminar Series on Cytoskeleton and Cell Division, Marine Biological Laboratory, Woods Hole, MA. Floyd, C., Molines, A., Lei, X., Honts, J. E., Chang, F., Elting, M. W., … Bhamla, S. (2022, October 16). A unified model for the dynamics of ATP-independent ultrafast contraction. [], Vol. 10. https://doi.org/10.1101/2022.10.14.512304 Destructive Testing on Cellular Machinery: Probing Mechanics of Cell Division by Laser Ablation. . (2022). In Colloquium, Department of Physics, Syracuse University, Syracuse, NY. Destructive testing on the spindle: probing closed and open mitosis by laser ablation. . (2022). Dynamic Kinetochore Workshop, Oslo, Norway. Laser ablation reveals how the mitotic spindle reshapes the fission yeast nucleus. . (2022). American Physical Society March Meeting. Moshtohry, M., Bellingham-Johnstun, K., Elting, M. W., & Laplante, C. (2022). Laser ablation reveals the impact of Cdc15p on the stiffness of the contractile ring. MOLECULAR BIOLOGY OF THE CELL, 33(6). https://doi.org/10.1091/mbc.E21-10-0515 Begley, M. A., Medina, C. P., Zareiesfandabadi, P., Rapp, M. B., & Elting, M. W. (2022, December 29). Pushing the envelope: force balance in fission yeast closed mitosis. [], Vol. 12. https://doi.org/10.1101/2022.12.28.522145 Uzsoy, A. S. M., Zareiesfandabadi, P., Jennings, J., Kemper, A. F., & Elting, M. W. (2021, July 8). Automated tracking of S. pombe spindle elongation dynamics. JOURNAL OF MICROSCOPY, Vol. 7. https://doi.org/10.1111/jmi.13044 Elting, M. W. (2021, June 21). Cytoskeletal biophysics: Passive crosslinker adapts to keep microtubule bundles on track. CURRENT BIOLOGY, Vol. 31, pp. R793–R796. https://doi.org/10.1016/j.cub.2021.04.065 Destructive Testing on the Cytoskeleton: Probing Mechanics of Cell Division by Laser Ablation. . (2021). In . Systems Biology Seminar Series, Boston University, Boston, MA. Begley, M. A., Solon, A. L., Davis, E. M., Sherrill, M. G., Ohi, R., & Eltinga, M. W. (2021). K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. MOLECULAR BIOLOGY OF THE CELL, 32(22). https://doi.org/10.1091/mbc.E20-06-0426 Zareiesfandabadi, P., & Elting, M. W. (2021). Viscoelastic Relaxation of the Nuclear Envelope Does Not Cause the Collapse of the Spindle After Ablation in S. pombe. Journal of Undergraduate Research in Physics. Retrieved from https://spsnational.org/file/397396/download?token=AYSdz03A#page=60 Zareiesfandabadi, P., & Elting, M. W. (2022). p Force by minus-end motors Dhc1 and Klp2 collapses the S. pombe spindle after laser ablation. BIOPHYSICAL JOURNAL, 121(2), 263–276. https://doi.org/10.1016/j.bpj.2021.12.019 Destructive Testing on the Cytoskeleton: Probing Mechanics of Cell Division by Laser Ablation. (2020). In Department of Biochemistry and Cellular and Molecular Biology Departmental Seminar Series, University of Tennessee at Knoxville, TN. Begley, M. A., Solon, A. L., Davis, E. M., Sherrill, M. G., Ohi, R., & Elting, M. W. (2020, May 20). K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. [], Vol. 5. https://doi.org/10.1101/2020.05.19.104661 Daniels, K. E., & Elting, M. W. (2020). Knitting Ripples. Patterns, 1(2), 100034. https://doi.org/10.1016/j.patter.2020.100034 Zareiesfandabadi, P., & Elting, M. W. (2020, October 21). The collapse of the spindle following ablation in S. pombe is mediated by microtubules and the motor protein dynein. [], Vol. 10. https://doi.org/10.1101/2020.10.20.347922 . Probing the mechanical organization of k-fiber microtubule bundles within the mammalian mitotic spindle via targeted laser ablation and speckle microscopy. . (2019). American Physical Society March Meeting, Boston, MA. Destructive testing on the cytoskeleton: probing the mechanical integrity of mammalian and fission yeast spindles via laser ablation. (2019). In Cytoskeleton Club, University of North Carolina, Chapel Hill, NC. Kif15 supports the mechanical integrity of the mammalian k-fiber. . (2019). Gordon Research Conference on Motile and Contractile Systems, New London, NH. Probing force balance in the S. pombe mitotic spindle by laser ablation. . (2019). International Fission Yeast Meeting, Barcelona, Spain. Elting, M. W., Suresh, P., & Dumont, S. (2018). The Spindle: Integrating Architecture and Mechanics across Scales. Trends in Cell Biology, 28(11), 896–910. https://doi.org/10.1016/J.TCB.2018.07.003 Elting, M. W., Udy, D. B., Prakash, M., & Dumont, S. (2017). Local Load-Bearing by Kinetochore-Fibers in the Mammalian Spindle Provides Mechanical Isolation and Redundancy. Biophysical Journal, 112(3), 432a. https://doi.org/10.1016/j.bpj.2016.11.2305 Elting, M. W., Prakash, M., Udy, D. B., & Dumont, S. (2017). Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy. Current Biology, 27(14), 2112–2122.e5. https://doi.org/10.1016/J.CUB.2017.06.018 Elting, M. W., Prakash, M., Udy, D. B., & Dumont, S. (2017, January). Mapping load-bearing in the mammalian spindle reveals local kinetochore-fiber anchorage that provides mechanical isolation and redundancy (Vol. 1). Vol. 1. https://doi.org/10.1101/103572 Karg, T., Elting, M. W., Vicars, H., Dumont, S., & Sullivan, W. (2017). The chromokinesin Klp3a and microtubules facilitate acentric chromosome segregation. The Journal of Cell Biology, 216(6), 1597–1608. https://doi.org/10.1083/JCB.201604079 Elting, M. W., Udy, D. B., & Dumont, S. (2016). Local Anchorage of Kinetochore-Fibers to the Mammalian Spindle Provides Mechanical Isolation and Load-Bearing Redundancy. Biophysical Journal, 110(3), 355a. https://doi.org/10.1016/J.BPJ.2015.11.1915 Elting, M. W., Hueschen, C. L., Udy, D. B., & Dumont, S. (2014). Force on spindle microtubule minus ends moves chromosomes. The Journal of Cell Biology, 206(2), 245–256. https://doi.org/10.1083/JCB.201401091 Elting, M. W., Hueschen, C. L., Udy, D. B., & Dumont, S. (2014). Probing Forces on Newly Generated Spindle Microtubule Minus-Ends. Biophysical Journal, 106(2), 9a–10a. https://doi.org/10.1016/J.BPJ.2013.11.100 Hueschen, C. L., Elting, M. W., Udy, D. B., & Dumont, S. (2014). Probing Forces on Newly Generated Spindle Microtubule Minus-Ends. Biophysical Journal, 106(2), 787a. https://doi.org/10.1016/J.BPJ.2013.11.4314 Elting, M. W., Leslie, S. R., Churchman, L. S., Korlach, J., McFaul, C. M. J., Leith, J. S., … Spudich, J. A. (2013). Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC). Optics Express, 21(1), 1189–1202. https://doi.org/10.1364/OE.21.001189 Elting, M. W., & Spudich, J. A. (2012). Future Challenges in Single-Molecule Fluorescence and Laser Trap Approaches to Studies of Molecular Motors. Developmental Cell, 23(6), 1084–1091. https://doi.org/10.1016/j.devcel.2012.10.002 Sung, J., Choe, E., Elting, M., Nag, S., Sutton, S., Deacon, J., … Spudich, J. (2012). Single Molecule Studies of Recombinant Human α- and β-Cardiac Myosin to Elucidate Molecular Mechanism of Familial Hypertrophic and Dilated Cardiomyopathies. Biophysical Journal, 102(3), 613a–614a. https://doi.org/10.1016/j.bpj.2011.11.3345 Elting, M. W., Bryant, Z., Liao, J.-C., & Spudich, J. A. (2011). Detailed Tuning of Structure and Intramolecular Communication Are Dispensable for Processive Motion of Myosin VI. Biophysical Journal, 100(2), 430–439. https://doi.org/10.1016/j.bpj.2010.11.045 Elting, M. W., Bryant, Z. D., Liao, J.-C., & Spudich, J. A. (2010). Probing Myosin-VI Processivity using Artificial Lever Arms. Biophysical Journal, 98(3), 723a. https://doi.org/10.1016/j.bpj.2009.12.3962 Liao, J.-C., Elting, M. W., Delp, S. L., Spudich, J. A., & Bryant, Z. (2009). Engineered Myosin VI Motors Reveal Minimal Structural Determinants of Directionality and Processivity. Journal of Molecular Biology, 392(4), 862–867. https://doi.org/10.1016/j.jmb.2009.07.046 Wessels, L., Elting, M. W., Scimeca, D., & Weninger, K. (2007). Rapid membrane fusion of individual virus particles with supported lipid bilayers. BIOPHYSICAL JOURNAL, 93(2), 526–538. https://doi.org/10.1529/biophysj.106.097485