@article{palasyuk_palasyuk_maggard_2010, title={Site-Differentiated Solid Solution in (Na1-xCux)(2)Ta4O11 and Its Electronic Structure and Optical Properties}, volume={49}, ISSN={["1520-510X"]}, DOI={10.1021/ic101529n}, abstractNote={The (Na(1-x)Cu(x))(2)Ta(4)O(11) (0 ≤ x ≤ 0.78) solid-solution was synthesized within evacuated fused-silica vessels and characterized by powder X-ray diffraction techniques (space group: R3c (#167), Z = 6, a = 6.2061(2)-6.2131(2) Å, c = 36.712(1)-36.861(1) Å, for x = 0.37, 0.57, and 0.78). The structure consists of single layers of TaO(7) pentagonal bipyramids as well as layers of isolated TaO(6) octahedra surrounded by Na(+) and Cu(+) cations. Full-profile Rietveld refinements revealed a site-differentiated substitution of Na(+) cations located in the 12c (Wyckoff) crystallographic site for Cu(+) cations in the 18d crystallographic site. This site differentiation is driven by the linear coordination geometry afforded at the Cu(+) site compared to the distorted seven-coordinate geometry of the Na(+) site. Compositions more Cu-rich than x ~ 0.78, that is, closer to "Cu(2)Ta(4)O(11)", could not be synthesized owing to the destabilizing Na(+)/Cu(+) vacancies that increase with x up to the highest attainable value of ~26%. The UV-vis diffuse reflectance spectra show a significant red-shift of the bandgap size from ~4.0 eV to ~2.65 eV with increasing Cu(+) content across the series. Electronic structure calculations using the TB-LMTO-ASA approach show that the reduction in bandgap size arises from the introduction of Cu 3d(10) orbitals and the formation of a new higher-energy valence band. A direct bandgap transition emerges at k = Γ that is derived from the filled Cu 3d(10) and the empty Ta 5d(0) orbitals, including a small amount of mixing with the O 2p orbitals. The resulting conduction and valence band energies are determined to favorably bracket the redox potentials for water reduction and oxidation, meeting the thermodynamic requirement for photocatalytic water-splitting reactions.}, number={22}, journal={INORGANIC CHEMISTRY}, author={Palasyuk, Olena and Palasyuk, Andriy and Maggard, Paul A.}, year={2010}, month={Nov}, pages={10571–10578} } @article{palasyuk_palasyuk_maggard_2010, title={Syntheses, optical properties and electronic structures of copper(I) tantalates: Cu5Ta11O30 and Cu3Ta7O19}, volume={183}, ISSN={["1095-726X"]}, DOI={10.1016/j.jssc.2010.01.030}, abstractNote={Two copper tantalates, Cu5Ta11O30 (1) and Cu3Ta7O19 (2), were synthesized by solid-state and flux synthetic methods, respectively. A synthetic route yielding 2 in high purity was found using a CuCl flux at 800oC and its structure was characterized using powder X-ray diffraction (XRD) data (P63/m (no. 176), Z=2, a=6.2278(1) Å, and c=20.1467(3) Å). The solid-state synthesis of 1 was performed using excess Cu2O that helped to facilitate the growth of single crystals and their characterization by XRD (P6¯2c (no. 190), Z=2, a=6.2252(1) Å, and c=32.516(1) Å). The atomic structures of both copper tantalates consist of alternating single and double layers of TaO7 pentagonal bipyramids that are bridged by a single layer of isolated TaO6 octahedra and linearly-coordinated Cu+. Measured optical bandgap sizes of ∼2.59 and ∼2.47 eV for 1 and 2 were located well within visible-light energies and were consistent with their orange–yellow colours. Each also exhibits optical absorption coefficients at the band edge of ∼700 and ∼275 cm−1, respectively, and which were significantly smaller than that for NaTaO3 of ∼1450 cm−1. Results of LMTO calculations indicate that their visible-light absorption is attributable mainly to indirect bandgap transitions between Cu 3d10 and Ta 5d0 orbitals within the TaO7 pentagonal bipyramids.}, number={4}, journal={JOURNAL OF SOLID STATE CHEMISTRY}, author={Palasyuk, Olena and Palasyuk, Andriy and Maggard, Paul A.}, year={2010}, month={Apr}, pages={814–822} }