@article{agarwalla_ogunnaike_ahn_froehlich_jansson_ligler_dotti_brudno_2022, title={Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells}, volume={3}, ISSN={["1546-1696"]}, DOI={10.1038/s41587-022-01245-x}, abstractNote={Despite their clinical success, chimeric antigen receptor (CAR)-T cell therapies for B cell malignancies are limited by lengthy, costly and labor-intensive ex vivo manufacturing procedures that might lead to cell products with heterogeneous composition. Here we describe an implantable Multifunctional Alginate Scaffold for T Cell Engineering and Release (MASTER) that streamlines in vivo CAR-T cell manufacturing and reduces processing time to a single day. When seeded with human peripheral blood mononuclear cells and CD19-encoding retroviral particles, MASTER provides the appropriate interface for viral vector-mediated gene transfer and, after subcutaneous implantation, mediates the release of functional CAR-T cells in mice. We further demonstrate that in vivo-generated CAR-T cells enter the bloodstream and control distal tumor growth in a mouse xenograft model of lymphoma, showing greater persistence than conventional CAR-T cells. MASTER promises to transform CAR-T cell therapy by fast-tracking manufacture and potentially reducing the complexity and resources needed for provision of this type of therapy.}, journal={NATURE BIOTECHNOLOGY}, author={Agarwalla, Pritha and Ogunnaike, Edikan A. and Ahn, Sarah and Froehlich, Kristen A. and Jansson, Anton and Ligler, Frances S. and Dotti, Gianpietro and Brudno, Yevgeny}, year={2022}, month={Mar} } @article{vanblunk_agarwalla_pandit_brudno_2022, title={Fabrication and Use of Dry Macroporous Alginate Scaffolds for Viral Transduction of T Cells}, volume={9}, ISSN={["1940-087X"]}, DOI={10.3791/64036}, abstractNote={Genetic engineering of T cells for CAR-T cell therapy has come to the forefront of cancer treatment over the last few years. CAR-T cells are produced by viral gene transfer into T cells. The current gold standard of viral gene transfer involves spinoculation of retronectin-coated plates, which is expensive and time-consuming. There is a significant need for efficient and cost-effective methods to generate CAR-T cells. Described here is a method for fabricating inexpensive, dry macroporous alginate scaffolds, known as Drydux scaffolds, that efficiently promote viral transduction of activated T cells. The scaffolds are designed to be used in place of gold standard spinoculation of retronectin-coated plates seeded with virus and simplify the process for transducing cells. Alginate is cross-linked with calcium-D-gluconate and frozen overnight to create the scaffolds. The frozen scaffolds are freeze-dried in a lyophilizer for 72 h to complete the formation of the dry macroporous scaffolds. The scaffolds mediate viral gene transfer when virus and activated T cells are seeded together on top of the scaffold to produce genetically modified cells. The scaffolds produce >85% primary T cell transduction, which is comparable to the transduction efficiency of spinoculation on retronectin-coated plates. These results demonstrate that dry macroporous alginate scaffolds serve as a cheaper and more convenient alternative to the conventional transduction method.}, number={187}, journal={JOVE-JOURNAL OF VISUALIZED EXPERIMENTS}, author={VanBlunk, Madelyn and Agarwalla, Pritha and Pandit, Sharda and Brudno, Yevgeny}, year={2022}, month={Sep} } @article{moody_brown_massaro_patel_agarwalla_simpson_brown_zheng_pierce_brudno_2022, title={Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture}, volume={138}, ISSN={["1878-7568"]}, url={https://doi.org/10.1016/j.actbio.2021.10.046}, DOI={10.1016/j.actbio.2021.10.046}, abstractNote={Alginate hydrogels are gaining traction for use in drug delivery, regenerative medicine, and as tissue engineered scaffolds due to their physiological gelation conditions, high tissue biocompatibility, and wide chemical versatility. Traditionally, alginate is decorated at the carboxyl group to carry drug payloads, peptides, or proteins. While low degrees of substitution do not cause noticeable mechanical changes, high degrees of substitution can cause significant losses to alginate properties including complete loss of calcium cross-linking. While most modifications used to decorate alginate deplete the carboxyl groups, we propose that alginate modifications that replenish the carboxyl groups could overcome the loss in gel integrity and mechanics. In this report, we demonstrate that restoring carboxyl groups during functionalization maintains calcium cross-links as well as hydrogel shear-thinning and self-healing properties. In addition, we demonstrate that alginate hydrogels modified to a high degree with azide modifications that restore the carboxyl groups have improved tissue retention at intramuscular injection sites and capture blood-circulating cyclooctynes better than alginate hydrogels modified with azide modifications that deplete the carboxyl groups. Taken together, alginate modifications that restore carboxyl groups could significantly improve alginate hydrogel mechanics for clinical applications. STATEMENT OF SIGNIFICANCE: Chemical modification of hydrogels provides a powerful tool to regulate cellular adhesion, immune response, and biocompatibility with local tissues. Alginate, due to its biocompatibility and easy chemical modification, is being explored for tissue engineering and drug delivery. Unfortunately, modifying alginate to a high degree of substitution consumes carboxyl group, which are necessary for ionic gelation, leading to poor hydrogel crosslinking. We introduce alginate modifications that restore the alginate's carboxyl groups. We demonstrate that modifications that reintroduce carboxyl groups restore gelation and improve gel mechanics and tissue retention. In addition to contributing to a basic science understanding of hydrogel properties, we anticipate our approach will be useful to create tissue engineered scaffolds and drug delivery platforms.}, journal={ACTA BIOMATERIALIA}, publisher={Elsevier BV}, author={Moody, C. T. and Brown, A. E. and Massaro, N. P. and Patel, A. S. and Agarwalla, P. A. and Simpson, A. M. and Brown, A. C. and Zheng, H. and Pierce, J. G. and Brudno, Y.}, year={2022}, month={Jan}, pages={208–217} } @article{agarwalla_ogunnaike_ahn_ligler_dotti_brudno_2020, title={Scaffold-Mediated Static Transduction of T Cells for CAR-T Cell Therapy}, volume={9}, ISSN={["2192-2659"]}, url={https://doi.org/10.1002/adhm.202000275}, DOI={10.1002/adhm.202000275}, abstractNote={Abstract}, number={14}, journal={ADVANCED HEALTHCARE MATERIALS}, publisher={Wiley}, author={Agarwalla, Pritha and Ogunnaike, Edikan A. and Ahn, Sarah and Ligler, Frances S. and Dotti, Gianpietro and Brudno, Yevgeny}, year={2020}, month={Jul} }