Pratik Joshi Shukla, S., Machekposhti, S. A., Joshi, N., Joshi, P., & Narayan, R. J. (2023, April 22). Microneedle-Integrated Device for Transdermal Sampling and Analyses of Targeted Biomarkers. SMALL SCIENCE, Vol. 4. https://doi.org/10.1002/smsc.202200087 Joshi, P., Shukla, S., Gupta, S., Joshi, N., Narayan, J., & Narayan, R. (2023, June 14). Synthesis of laser-patterned MoS2 nanoneedles for advanced electrochemical sensing. MRS COMMUNICATIONS, Vol. 6. https://doi.org/10.1557/s43579-023-00381-y Joshi, P., Shukla, S., Gupta, S., Riley, P. R., Narayan, J., & Narayan, R. (2022). Excimer Laser Patterned Holey Graphene Oxide Films for Nonenzymatic Electrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES, 14(32), 37149–37160. https://doi.org/10.1021/acsami.2c09096 Gupta, S., Joshi, P., Sachan, R., & Narayan, J. (2022). Fabricating Graphene Oxide/h-BN Metal Insulator Semiconductor Diodes by Nanosecond Laser Irradiation. NANOMATERIALS, 12(15). https://doi.org/10.3390/nano12152718 Riley, P. R., Joshi, P., Khosla, N., Narayan, R. J., & Narayan, J. (2022). Formation of Q-carbon with wafer scale integration. CARBON, 196, 972–978. https://doi.org/10.1016/j.carbon.2022.06.003 Joshi, P., Riley, P. R., Denning, W., Shukla, S., Khosla, N., Narayan, J., & Narayan, R. (2022, January 13). Laser-patterned carbon coatings on flexible and optically transparent plastic substrates for advanced biomedical sensing and implant applications. JOURNAL OF MATERIALS CHEMISTRY C, Vol. 1. https://doi.org/10.1039/d1tc05176h Narayan, J., Joshi, P., Smith, J., Gao, W., Weber, W. J., & Narayan, R. J. (2022). Q-carbon as a new radiation-resistant material. CARBON, 186, 253–261. https://doi.org/10.1016/j.carbon.2021.10.006 Joshi, P., Riley, P., Goud, K. Y., Mishra, R. K., & Narayan, R. (2022). [Review of Recent advances of boron-doped diamond electrochemical sensors toward environmental applications]. CURRENT OPINION IN ELECTROCHEMISTRY, 32. https://doi.org/10.1016/j.coelec.2021.100920 Shukla, S., Joshi, P., Riley, P., & Narayan, R. J. (2022). Square wave voltammetric approach to leptin immunosensing and optimization of driving parameters with chemometrics. BIOSENSORS & BIOELECTRONICS, 216. https://doi.org/10.1016/j.bios.2022.114592 Joshi, P., Riley, P. R., Mishra, R., Machekposhti, S. A., & Narayan, R. (2022). Transdermal Polymeric Microneedle Sensing Platform for Fentanyl Detection in Biofluid. BIOSENSORS-BASEL, 12(4). https://doi.org/10.3390/bios12040198 Joshi, P., Riley, P., Gupta, S., Narayan, R. J., & Narayan, J. (2021). [Review of Advances in laser-assisted conversion of polymeric and graphitic carbon into nanodiamond films]. NANOTECHNOLOGY, 32(43). https://doi.org/10.1088/1361-6528/ac1097 Joshi, P., Mishra, R., & Narayan, R. J. (2021). [Review of Biosensing applications of carbon-based materials]. CURRENT OPINION IN BIOMEDICAL ENGINEERING, 18. https://doi.org/10.1016/j.cobme.2021.100274 Yang, K.-H., Joshi, P., Rodenhausen, K. B., Sumant, A. V., Skoog, S. A., & Narayan, R. J. (2021). Correlation of zeta potential and contact angle of oxygen and fluorine terminated nitrogen incorporated ultrananocrystalline diamond (N UNCD) thin films. MATERIALS LETTERS, 295. https://doi.org/10.1016/j.matlet.2021.129823 Riley, P. R., Joshi, P., Azizi Machekposhti, S., Sachan, R., Narayan, J., & Narayan, R. J. (2021). Enhanced Vapor Transmission Barrier Properties via Silicon-Incorporated Diamond-Like Carbon Coating. POLYMERS, 13(20). https://doi.org/10.3390/polym13203543 Riley, P. R., Joshi, P., Narayan, J., & Narayan, R. J. (2021). Enhanced nucleation and large-scale growth of CVD diamond via surface-modification of silicon-incorporated diamond-like carbon thin films. DIAMOND AND RELATED MATERIALS, 120. https://doi.org/10.1016/j.diamond.2021.108630 Narayan, J., Bhaumik, A., Gupta, S., Joshi, P., Riley, P., & Narayan, R. J. (2021). Formation of self-organized nano- and micro-diamond rings. MATERIALS RESEARCH LETTERS, 9(7), 300–307. https://doi.org/10.1080/21663831.2021.1907627 Joshi, P., Gupta, S., Riley, P. R., Narayan, R. J., & Narayan, J. (2021). Liquid phase regrowth of (110) nanodiamond film by UV laser annealing of PTFE to generate dense CVD microdiamond film. DIAMOND AND RELATED MATERIALS, 117. https://doi.org/10.1016/j.diamond.2021.108481 Riley, P. R., Joshi, P., Penchev, H., Narayan, J., & Narayan, R. J. (2021). One-Step Formation of Reduced Graphene Oxide from Insulating Polymers Induced by Laser Writing Method. CRYSTALS, 11(11). https://doi.org/10.3390/cryst11111308 Narayan, J., Bhaumik, A., Gupta, S., Joshi, P., Riley, P., & Narayan, R. J. (2021). Role of Q-carbon in nucleation and formation of continuous diamond film. CARBON, 176, 558–568. https://doi.org/10.1016/j.carbon.2021.02.049 Joshi, P., Haque, A., Gupta, S., Narayan, R. J., & Narayan, J. (2021). Synthesis of multifunctional microdiamonds on stainless steel substrates by chemical vapor deposition. CARBON, 171, 739–749. https://doi.org/10.1016/j.carbon.2020.09.064 Joshi, P., Kombaiah, B., Cinbiz, M. N., & Murty, K. L. (2020). Characterization of stress-rupture behavior of nuclear-grade C26M2 FeCrAl alloy for accident-tolerant fuel cladding via burst testing. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 791. https://doi.org/10.1016/j.msea.2020.139753 Gupta, S., Joshi, P., & Narayan, J. (2020). Electron mobility modulation in graphene oxide by controlling carbon melt lifetime. CARBON, 170, 327–337. https://doi.org/10.1016/j.carbon.2020.07.073