Perry Peralta Edmunds, C. W., Peralta, P., Sharma-Shivappa, R. R., Kelley, S. S., Chiang, V. L., Miller, Z. D., … Peszlen, I. (2020). Fungal Pretreatment and Enzymatic Hydrolysis of Genetically-modified Populus trichocarpa. BIORESOURCES, 15(3), 6488–6505. https://doi.org/10.15376/biores.15.3.6488-6505 Miller, Z. D., Peralta, P. N., Mitchell, P. H., Kelley, S. S., Chiang, V. L., Pearson, L., … Peszlen, I. M. (2019). ANATOMICAL, PHYSICAL, AND MECHANICAL PROPERTIES OF TRANSGENIC LOBLOLLY PINE (PINUS TAEDA L.) MODIFIED FOR INCREASED DENSITY. WOOD AND FIBER SCIENCE, 51(2), 173–182. https://doi.org/10.22382/wfs-2019-018 Miller, Z. D., Peralta, P. N., Mitchell, P., Chiang, V. L., Kelley, S. S., Edmunds, C. W., & Peszlen, I. M. (2019). Anatomy and Chemistry of Populus trichocarpa with Genetically Modified Lignin Content. BIORESOURCES, 14(3), 5729–5746. https://doi.org/10.15376/biores.14.3.5729-5746 Edmunds, C. W., Peszlen, I., Chiang, V. L., Kelley, S. S., Miller, Z. D., Davis, M. F., … Peralta, P. (2019). Thermo-mechanical Behavior of Genetically Modified Populus trichocarpa. BIORESOURCES, 14(2), 4760–4773. https://doi.org/10.15376/biores.14.2.4760-4773 Miller, Z. D., Peralta, P. N., Mitchell, P., Chiang, V. L., Edmunds, C. W., & Peszlen, I. M. (2018). Altered Lignin Content and Composition in Transgenic Populus trichocarpa Results in a Decrease of Modulus of Elasticity. BIORESOURCES, 13(4), 7698–7708. https://doi.org/10.15376/biores.13.4.7698-7708 Edmunds, C. W., Peralta, P., Kelley, S. S., Chiang, V. L., Sharma-Shivappa, R. R., Davis, M. F., … Peszlen, I. (2017). Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content. CELLULOSE, 24(4), 1901–1914. https://doi.org/10.1007/s10570-017-1231-z Dick, B. M., Hey, R., Peralta, P., Jewell, I., Simon, P., & Peszlen, I. (2014). ESTIMATING ANNUAL RIVERBANK EROSION RATES-A DENDROGEOMORPHIC METHOD. RIVER RESEARCH AND APPLICATIONS, 30(7), 845–856. https://doi.org/10.1002/rra.2682 Dyk, H., Peralta, P., & PESZLEN, I. L. O. N. A. (2013). Modeling of the mechanical properties of a wood-fiber/bicomponent-fiber composite. BioResources, 8(3), 3672–3684. https://doi.org/10.15376/biores.8.3.3672-3684 Horvath, L., Peszlen, I., Gierlinger, N., Peralta, P., Kelley, S., & Csoka, L. (2012). Distribution of wood polymers within the cell wall of transgenic aspen imaged by Raman microscopy. HOLZFORSCHUNG, 66(6), 717–725. https://doi.org/10.1515/hf-2011-0126 Giles, R., Peszlen, I., Peralta, P., Chang, H.-M., Farrell, R., Grand, L., & Horvath, B. (2012). Fungal biodegradation of genetically modified and lignin-altered quaking aspen (Populus tremuloides Michx.). HOLZFORSCHUNG, 66(1), 105–110. https://doi.org/10.1515/hf.2011.144 Xiang, Z. Y., Peralta, P., & Peszlen, I. (2012). Lumber drying stresses and mitigation of cross-sectional deformation. Wood and Fiber Science, 44(1), 94–102. Horvath, L., Peralta, P., Peszlen, I., Csoka, L., Horvath, B., & Jakes, J. (2012). Modeling hygroelastic properties of genetically modified Aspen. Wood and Fiber Science, 44(1), 22–35. Pasztory, Z., Peralta, P. N., Molnar, S., & Peszlen, I. (2012). Modeling the hygrothermal performance of selected North American and comparable European wood-frame house walls. ENERGY AND BUILDINGS, 49, 142–147. https://doi.org/10.1016/j.enbuild.2012.02.003 Csoka, L., Hoeger, I. C., Rojas, O. J., Peszlen, I., Pawlak, J. J., & Peralta, P. N. (2012). Piezoelectric Effect of Cellulose Nanocrystals Thin Films. ACS Macro Letters, 1(7), 867–870. https://doi.org/10.1021/mz300234a Csoka, L., Hoeger, I. C., Peralta, P., Peszlen, I., & Rojas, O. J. (2011). Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 363(1), 206–212. https://doi.org/10.1016/j.jcis.2011.07.045 Pasztory, Z., Peralta, P. N., & Peszlen, I. (2011). Multi-layer heat insulation system for frame construction buildings. ENERGY AND BUILDINGS, 43(2-3), 713–717. https://doi.org/10.1016/j.enbuild.2010.11.016 Horvath, L., Peszlen, I., Peralta, P., & Kelley, S. (2011). Use of transmittance near-infrared spectroscopy to predict the mechanical properties of 1-and 2-year-old transgenic aspen. WOOD SCIENCE AND TECHNOLOGY, 45(2), 303–314. https://doi.org/10.1007/s00226-010-0330-x Horvath, B., Peralta, P., Frazier, C., & Peszlen, I. (2011). thermal softening of transgenic aspen. BioResources, 6(2), 2125–2134. Horvath, B., Peszlen, I., Peralta, P., Kasal, B., & Li, L. (2010). EFFECT OF LIGNIN GENETIC MODIFICATION ON WOOD ANATOMY OF ASPEN TREES. IAWA JOURNAL, 31(1), 29–38. https://doi.org/10.1163/22941932-90000003 Horvath, B., Peszlen, I., Peralta, P., Horvath, L., Kasal, B., & Li, L. G. (2010). Elastic modulus determination of transgenic aspen using a dynamic mechanical analyzer in static bending mode. Forest Products Journal, 60(3), 296–300. Horvath, B., Peralta, P., Peszlen, I., Divos, F., Kasal, B., & Li, L. G. (2010). Elastic modulus of transgenic aspen. Wood Research, 55(1), 1–10. Horvath, L., Peszlen, I., Peralta, P., Kasal, B., & Li, L. G. (2010). Mechanical properties of genetically engineered young aspen with modified lignin content and/or structure. Wood and Fiber Science, 42(3), 310–317. Saralde, T. C., Peralta, P. N., Peszlen, I., & Horvath, B. (2010). Technical note: Shrinkage properties of partially cad-deficient loblolly pine lumber. Wood and Fiber Science, 42(1), 117–119. Dyk, H., Peralta, P., PESZLEN, I. L. O. N. A., & Banks-Lee, P. (2009). An innovative wood-fiber composite incorporating nonwoven textile technologies. Forest Products Journal, 59(11-12), 11–17. https://doi.org/10.13073/0015-7473-59.11.11 Mechanical properties of lumber from partially cad-deficient loblolly pine (Pinus taeda). (2008). Wood and Fiber Science, 40(4), 657–662. Kasal, B., Peszlen, I., Peralta, P., & Li, L. (2007). Preliminary tests to evaluate the mechanical properties of young trees with small diameter. HOLZFORSCHUNG, Vol. 61, pp. 390–393. https://doi.org/10.1515/HF.2007.054 Peralta, P. N., & Bangi, A. P. (2006). Finite element model for the heating of frozen wood. Wood and Fiber Science, 38(2), 359–364. Peralta, P. N., & Bangi, A. P. (2005). Sensible heating approach to controlling the equilibrium moisture content of wood. Forest Products Journal, 55(12), 17–20. Marlowe, W. J., Ramsey, J. D., Peralta, P., & Bangi, A. P. (2004). GIS mapping of monthly outdoor and indoor equilibrium moisture content for the United States. Forest Products Journal, 54(12), 122–125. Peralta, P. N., & Bangi, A. P. (2003). A nonlinear regression technique for calculating the average diffusion coefficient of wood during drying. Wood and Fiber Science, 35(3), 401–408. Choong, E. T., Peralta, P. N., & Shupe, T. F. (2001). Effect of hardwood vessels on longitudinal moisture diffusion. Wood and Fiber Science, 33(2), 159–165. Gillis, C. M., Stephens, W. C., & Peralta, P. N. (2001). Moisture meter correction factors for four Brazilian wood species. Forest Products Journal, 51(4), 83–86. Joseph, R. G., & Peralta, P. N. (2001). Nonisothermal radiofrequency drying of red oak. Wood and Fiber Science, 33(3), 476–485. Peralta, P. N., & Bangi, A. P. (2000). Grid-based tactile sensor system for shrinkage pressure measurement. Wood and Fiber Science, 32(1), 52–60. Zhang, J., & Peralta, P. N. (1999). Moisture content-water potential characteristic curves for red oak and loblolly pine. Wood and Fiber Science, 31(4), 360–369. Peralta, P. N., & Bangi, A. P. (1998). Modeling wood moisture sorption hysteresis based on similarity hypothesis. I. Direct approach. Wood and Fiber Science, 30(1), 48–55. Peralta, P. N., & Bangi, A. P. (1998). Modeling wood moisture sorption hysteresis based on similarity hypothesis. II. Capillary-radii approach. Wood and Fiber Science, 30(2), 148–154. Peralta, P. N., Bangi, A. P., & Lee, A. W. C. (1997). Thermodynamics of moisture sorption by the giant-timber bamboo. HOLZFORSCHUNG, 51(2), 177–182. https://doi.org/10.1515/hfsg.1997.51.2.177 Peralta, P. N. (1996). Moisture sorption hysteresis and the independent-domain theory: The moisture distribution function. Wood and Fiber Science, 28(4), 406.