@article{baldwin_zhang_zaloznik_patino_simmonds_nishijima_carriere_tynan_horn_2024, title={D retention in e-beam powder-bed fused (3-D printed) tungsten exposed to high-flux deuterium plasma in Pisces-RF}, volume={39}, ISSN={["2352-1791"]}, DOI={10.1016/j.nme.2024.101626}, abstractNote={Tungsten targets produced by the additive manufacturing (AM) method of electron-beam powder-bed fusion, or 3–D metal printing, are exposed to high flux D plasma in the Pisces-RF linear plasma device with the plasma-exposed surface normal to the AM build direction. D retention was measured by thermal desorption mass spectrometry following exposure to D plasma with an associated ∼50eV D+ ion flux. D+ fluence, and operational temperature, in the ranges 5×1024–5×1026 m−2 and 400–1000 K, are explored. D retention values for the AM W are compared to identically plasma exposed’conventional’ sintered W and it is found that total D retention is similar. However, the D thermal release is notably different. Desorption from the AM W shows reduced D retention in traps typical of sintered W, and moderately increased trapping in defect types of higher trap release energy. The dependence of D retention on fluence is also different for the AM W, revealing an uptake slower than expected from Fickian diffusion, while that for sintered W is consistent and in agreement with previous poly-crystaline W results from Pisces-B. Hydrogen transport modelling of the fluence dependence suggests that interconnected pathways for D release back to the surface during plasma-exposure can account for the slower D uptake in the AM W.}, journal={NUCLEAR MATERIALS AND ENERGY}, author={Baldwin, M. J. and Zhang, H. and Zaloznik, A. and Patino, M. I. and Simmonds, M. J. and Nishijima, D. and Carriere, P. R. and Tynan, G. R. and Horn, T.}, year={2024}, month={Jun} } @article{zhang_carriere_amoako_rock_thielk_fletcher_horn_2023, title={Microstructure and Elevated Temperature Flexure Testing of Tungsten Produced by Electron Beam Additive Manufacturing}, volume={8}, ISSN={["1543-1851"]}, DOI={10.1007/s11837-023-06045-5}, abstractNote={Abstract}, journal={JOM}, author={Zhang, Haozhi and Carriere, Paul R. and Amoako, Emmanuel D. and Rock, Chris D. and Thielk, Seiji U. and Fletcher, Colin G. and Horn, Timothy J.}, year={2023}, month={Aug} } @article{nantista_gamzina_ledford_horn_carriere_frigola_2020, title={Design and Test of Copper Printed RF Cavities}, DOI={10.1109/IVEC45766.2020.9520624}, abstractNote={Additive manufacturing of high-quality copper using electron beam melting techniques has demonstrated significant progress toward suitability for production of vacuum electronics components. Additively manufactured low oxygen level copper wafers, as printed and annealed, have been tested in an RF cavity designed for surface resistivity measurements. Strings of coupled cavities for S-band and X-band traveling wave tubes have been designed for vertical additive manufacturing in powder bed systems, enabling significant cost reduction. The S-band RF cavity string design has been additively manufactured, processed and RF tested.}, journal={2020 IEEE 21ST INTERNATIONAL CONFERENCE ON VACUUM ELECTRONICS (IVEC 2020)}, author={Nantista, Christopher and Gamzina, Diana and Ledford, Christopher and Horn, Timothy and Carriere, Paul and Frigola, Pedro}, year={2020}, pages={149–150} } @article{ledford_rock_carriere_frigola_gamzina_horn_2019, title={Characteristics and Processing of Hydrogen-Treated Copper Powders for EB-PBF Additive Manufacturing}, volume={9}, ISSN={["2076-3417"]}, DOI={10.3390/app9193993}, abstractNote={The fabrication of high purity copper using additive manufacturing has proven difficult because of oxidation of the powder feedstock. Here, we present work on the hydrogen heat treatment of copper powders for electron beam powder bed fusion (EB-PBF), in order to enable the fabrication of high purity copper components for applications such as accelerator components and vacuum electronic devices. Copper powder with varying initial oxygen contents were hydrogen heat-treated and characterized for their chemistry, morphology, and microstructure. Higher initial oxygen content powders were found to not only reduce surface oxides, but also reduce oxides along the grain boundaries and form trapped H2O vapor inside the particles. The trapped H2O vapor was verified by thermogravimetric analysis (TGA) and residual gas analysis (RGA) while melting. The mechanism of the H2O vapor escaping the particles was determined by in-situ SEM heated stage experiments, where the particles were observed to crack along the grain boundaries. To determine the effect of the EB-PBF processing on the H2O vapor, the thermal simulation and the validation of single melt track width wafers were conducted along with melting single layer discs for chemistry analysis. A high speed video of the EB-PBF melting was performed in order to determine the effect of the trapped H2O vapor on the melt pool. Finally, solid samples were fabricated from hydrogen-treated copper powder, where the final oxygen content measured ~50 wt. ppm, with a minimal residue hydrogen content, indicating the complete removal of trapped H2O vapor from the solid parts.}, number={19}, journal={APPLIED SCIENCES-BASEL}, author={Ledford, Christopher and Rock, Christopher and Carriere, Paul and Frigola, Pedro and Gamzina, Diana and Horn, Timothy}, year={2019}, month={Oct} }