@article{chester_theetharappan_ngobili_daniele_brown_2020, title={Ultrasonic Microplotting of Microgel Bioinks}, volume={12}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.0c15056}, abstractNote={Material scaffolds that mimic the structure, function, and bioactivity of native biological tissues are in constant development. Recently, material scaffolds composed of microgel particles have shown promise for applications ranging from bone regeneration to spheroid cell growth. Previous studies with poly N-isopropylacrylamide microgel scaffolds utilized a layer-by-layer (LBL) technique where individual, uniform microgel layers are built on top of each other resulting in a multilayer scaffold. However, this technique is limited in its applications due to the inability to control microscale deposition or patterning of multiple particle types within a microgel layer. In this study, an ultrasonic microplotting technique is used to address the limitations of LBL fabrication to create patterned microgel films. Printing parameters, such as bioink formulation, surface contact angle, and print head diameter, are optimized to identify the ideal parameters needed to successfully print microgel films. It was found that bioinks composed of 2 mg/mL of microgels and 20% polyethylene glycol by volume (v/v), on bovine serum albumin-coated glass, with a print head diameter of 50 μm resulted in the highest quality prints. Patterned films were created with a maximum resolution of 50 μm with the potential for finer resolutions to be achieved with alternative bioink compositions and printing parameters. Overall, ultrasonic microplotting can be used to create more complex microgel films than is possible with LBL techniques and offers the possibility of greater printing resolution in 3D with further technology development.}, number={42}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Chester, D. and Theetharappan, P. and Ngobili, T. and Daniele, M. and Brown, A. C.}, year={2020}, month={Oct}, pages={47309–47319} }