Qiuyue Chen Li, W., Jia, H., Li, M., Huang, Y., Chen, W., Yin, P., … Liu, L. (2023, April 16). Divergent selection of KNR6 maximizes grain production by balancing the flowering-time adaptation and ear size in maize. PLANT BIOTECHNOLOGY JOURNAL, Vol. 21. https://doi.org/10.1111/pbi.14050 Lima, D. C., Washburn, J. D., Varela, J. I., Chen, Q., Gage, J. L., Romay, M. C., … Leon, N. (2023). Genomes to Fields 2022 Maize Genotype by Environment Prediction Competition. Research Square. https://doi.org/10.21203/rs.3.rs-2973451/v1 Lima, D. C., Washburn, J. D., Varela, J. I., Chen, Q., Gage, J. L., Romay, M. C., … Leon, N. (2023, July 17). Genomes to Fields 2022 Maize genotype by Environment Prediction Competition. BMC RESEARCH NOTES, Vol. 16. https://doi.org/10.1186/s13104-023-06421-z Chen, Q., Samayoa, L. F., Yang, C. J., Olukolu, B. A., York, A. M., Jesus Sanchez-Gonzalez, J., … Doebley, J. F. (2021). A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication. Proceedings of the National Academy of Sciences, 118(43). https://doi.org/10.1073/pnas.2112970118 Samayoa, L. F., Olukolu, B. A., Yang, C. J., Chen, Q., Stetter, M. G., York, A. M., … Holland, J. B. (2021). Domestication reshaped the genetic basis of inbreeding depression in a Maize landrace compared to its wild relative, Teosinte. BioRxiv, Vol. 9. https://doi.org/10.1101/2021.09.01.458502 Samayoa, L. F., Olukolu, B. A., Yang, C. J., Chen, Q., Stetter, M. G., York, A. M., … Holland, J. B. (2021). Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. PLOS GENETICS, 17(12). https://doi.org/10.1371/journal.pgen.1009797 Chen, Q., Li, W., Tan, L., & Tian, F. (2021). Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. Molecular Plant, 14(1), 9–26. https://doi.org/10.1016/j.molp.2020.12.006 Chen, Q., & Tian, F. (2021). Towards knowledge-driven breeding. Nature Plants, 7(3), 242–243. https://doi.org/10.1038/s41477-021-00864-7 Chen, Q., Samayoa, L. F., Yang, C. J., Bradbury, P. J., Olukolu, B. A., Neumeyer, M. A., … Doebley, J. F. (2020). The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. PLOS GENETICS, 16(5). https://doi.org/10.1371/journal.pgen.1008791 Xu, G., Cao, J., Wang, X., Chen, Q., Jin, W., Li, Z., & Tian, F. (2019). Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. Plant Cell, 31(9), 1990–2009. https://doi.org/10.1105/TPC.19.00111 Fu, Y., Xu, G., Chen, H., Wang, X., Chen, Q., Huang, C., … Tian, F. (2019). QTL mapping for leaf morphology traits in a large maize-teosinte population. Molecular Breeding, 39(7). https://doi.org/10.1007/s11032-019-1012-5 Chen, Q., Yang, C. J., York, A. M., Xue, W., Daskalska, L. L., DeValk, C. A., … Doebley, J. F. (2019). TeoNAM: A nested association mapping population for domestication and agronomic trait analysis in maize. BioRxiv. https://doi.org/10.1101/647461 Chen, Q., Yang, C. J., York, A. M., Xue, W., Daskalska, L. L., DeValk, C. A., … Doebley, J. F. (2019). TeoNAM: A nested association mapping population for domestication and agronomic trait analysis in maize. Genetics, 213(3), 1065–1078. https://doi.org/10.1534/genetics.119.302594 Tian, J., Wang, C., Xia, J., Wu, L., Xu, G., Wu, W., … Tian, F. (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365(6454), 658–664. https://doi.org/10.1126/science.aax5482 Wang, X., Chen, Q., Wu, Y., Lemmon, Z. H., Xu, G., Huang, C., … Tian, F. (2018). Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population. Molecular Plant, 11(3), 443–459. https://doi.org/10.1016/j.molp.2017.12.011 Chen, Q., Han, Y., Liu, H., Wang, X., Sun, J., Zhao, B., … Tian, F. (2018). Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in Maize. Plant Cell, 30(7), 1404–1423. https://doi.org/10.1105/tpc.18.00109 Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., … Tian, F. (2018). Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Current Biology, 28(18), 3005–3015.e4. https://doi.org/10.1016/j.cub.2018.07.029 Xu, G., Wang, X., Huang, C., Xu, D., Li, D., Tian, J., … Tian, F. (2017). Complex genetic architecture underlies maize tassel domestication. New Phytologist, 214(2), 852–864. https://doi.org/10.1111/nph.14400 Xu, D., Wang, X., Huang, C., Xu, G., Liang, Y., Chen, Q., … Tian, F. (2017). Glossy15 Plays an Important Role in the Divergence of the Vegetative Transition between Maize and Its Progenitor, Teosinte. Molecular Plant, 10(12), 1579–1583. https://doi.org/10.1016/j.molp.2017.09.016 Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., … Tian, F. (2017). ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the United States of America, 115(2), E334–E341. https://doi.org/10.1073/pnas.1718058115 Huang, C., Chen, Q., Xu, G., Xu, D., Tian, J., & Tian, F. (2016). Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 58(1), 81–90. https://doi.org/10.1111/jipb.12358 Li, D., Wang, X., Zhang, X., Chen, Q., Xu, G., Xu, D., … Tian, F. (2016). The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytologist, 210(1), 256–268. https://doi.org/10.1111/nph.13765 Chen, Q., Liu, Z., Wang, B., Wang, X., Lai, J., & Tian, F. (2015). Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Plant Cell Reports, 34(10), 1761–1771. https://doi.org/10.1007/s00299-015-1822-9