@article{ivarsson_bennett_ferrara_strauch_vallase_iorizzo_pecorelli_lila_valacchi_2024, title={Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage}, volume={6}, ISSN={["2042-650X"]}, url={https://doi.org/10.1039/D4FO01874E}, DOI={10.1039/d4fo01874e}, abstractNote={As the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel}, journal={FOOD & FUNCTION}, author={Ivarsson, John and Bennett, Abby and Ferrara, Francesca and Strauch, Renee and Vallase, Andrea and Iorizzo, Massimo and Pecorelli, Alessandra and Lila, Mary Ann and Valacchi, Giuseppe}, year={2024}, month={Jun} } @article{ivarsson_bennett_ferrara_strauch_vallese_iorizzo_pecorelli_lila_valacchi_2024, title={Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage (vol 15, pg 7849, 2024)}, volume={10}, ISSN={["2042-650X"]}, DOI={10.1039/d4fo90097a}, abstractNote={Correction for ‘Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage’ by John Ivarsson et al. , Food Funct. , 2024, 15 , 7849–7864, https://doi.org/10.1039/D4FO01874E.}, journal={FOOD & FUNCTION}, author={Ivarsson, John and Bennett, Abby and Ferrara, Francesca and Strauch, Renee and Vallese, Andrea and Iorizzo, Massimo and Pecorelli, Alessandra and Lila, Mary Ann and Valacchi, Giuseppe}, year={2024}, month={Oct} } @article{nieman_sakaguchi_omar_davis_shaffner_strauch_lila_zhang_2023, title={Blueberry intake elevates post-exercise anti-inflammatory oxylipins: a randomized trial}, volume={13}, ISSN={["2045-2322"]}, DOI={10.1038/s41598-023-39269-1}, abstractNote={AbstractThis study determined if 18 days of supplementation with blueberries (BL) compared to placebo (PL) could mitigate muscle soreness and damage and improve inflammation resolution in untrained adults (n = 49, ages 18–50 years) after engaging in a 90-min bout of “weekend warrior” eccentric exercise. The BL freeze dried supplement provided 1 cup of fresh blueberries per day equivalent with 805 mg/day total phenolics and 280 mg/day anthocyanins. Urine levels of eight BL gut-derived phenolics increased after 14- and 18-days supplementation with 83% higher concentrations in BL vs. PL (p < 0.001). The 90-min exercise bout caused significant muscle soreness and damage during 4d of recovery and a decrease in exercise performance with no significant differences between PL and BL. Plasma oxylipins were identified (n = 76) and grouped by fatty acid substrates and enzyme systems. Linoleic acid (LA) oxylipins generated from cytochrome P450 (CYP) (9,10-, 12,13-dihydroxy-9Z-octadecenoic acids) (diHOMEs) were lower in BL vs. PL (treatment effect, p = 0.051). A compositive variable of 9 plasma hydroxydocosahexaenoic acids (HDoHEs) generated from docosahexaenoic acid (DHA, 22:6) and lipoxygenase (LOX) was significantly higher in BL vs. PL (treatment effect, p = 0.008). The composite variable of plasma 14-HDoHE, 17-HDoHE, and the eicosapentaenoic acid (EPA)-derived oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE) (specialized pro-resolving lipid mediators, SPM, intermediates) was significantly higher in BL vs PL (treatment effect, p = 0.014). Pearson correlations showed positive relationships between post-exercise DHA-LOX HDoHEs and SPM intermediates with urine blueberry gut-derived phenolics (r = 0.324, p = 0.023, and r = 0.349, p = 0.015, respectively). These data indicate that 18d intake of 1 cup/day blueberries compared to PL was linked to a reduction in pro-inflammatory diHOMES and sustained elevations in DHA- and EPA-derived anti-inflammatory oxylipins in response to a 90-min bout of unaccustomed exercise by untrained adults.}, number={1}, journal={SCIENTIFIC REPORTS}, author={Nieman, David C. and Sakaguchi, Camila A. and Omar, Ashraf M. and Davis, Kierstin L. and Shaffner, Cameron E. and Strauch, Renee C. and Lila, Mary Ann and Zhang, Qibin}, year={2023}, month={Jul} } @article{sakaguchi_nieman_omar_strauch_williams_lila_zhang_2024, title={Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise}, volume={16}, ISSN={["2072-6643"]}, url={https://www.mdpi.com/2072-6643/16/1/36}, DOI={10.3390/nu16010036}, abstractNote={Mangoes have a unique nutrient profile (carotenoids, polyphenols, sugars, and vitamins) that we hypothesized would mitigate post-exercise inflammation. This study examined the effects of mango ingestion on moderating exercise-induced inflammation in a randomized crossover trial with 22 cyclists. In random order with trials separated by a 2-week washout period, the cyclists ingested 330 g mango/day with 0.5 L water or 0.5 L of water alone for 2 weeks, followed by a 2.25 h cycling bout challenge. Blood and urine samples were collected pre- and post-2 weeks of supplementation, with additional blood samples collected immediately post-exercise and 1.5-h, 3-h, and 24 h post-exercise. Urine samples were analyzed for targeted mango-related metabolites. The blood samples were analyzed for 67 oxylipins, which are upstream regulators of inflammation and other physiological processes. After 2 weeks of mango ingestion, three targeted urine mango-related phenolic metabolites were significantly elevated compared to water alone (interaction effects, p ≤ 0.003). Significant post-exercise increases were measured for 49 oxylipins, but various subgroup analyses showed no differences in the pattern of change between trials (all interaction effects, p > 0.150). The 2.25 h cycling bouts induced significant inflammation, but no countermeasure effect was found after 2 weeks of mango ingestion despite the elevation of mango gut-derived phenolic metabolites.}, number={1}, journal={NUTRIENTS}, author={Sakaguchi, Camila A. and Nieman, David C. and Omar, Ashraf M. and Strauch, Renee C. and Williams, James C. and Lila, Mary Ann and Zhang, Qibin}, year={2024}, month={Jan} } @article{lila_hoskin_grace_xiong_strauch_ferruzzi_iorizzo_kay_2022, title={Boosting the Bioaccessibility of Dietary Bioactives by Delivery as Protein-Polyphenol Aggregate Particles}, volume={4}, ISSN={["1520-5118"]}, url={https://doi.org/10.1021/acs.jafc.2c00398}, DOI={10.1021/acs.jafc.2c00398}, abstractNote={Protein-polyphenol aggregate particles concurrently fortify a functional food product with healthy dietary proteins and concentrated polyphenols. However, what impact does ingestion of aggregate particles have on ultimate health relevance of either the polyphenolic molecules in the matrix or the protein molecules? Because human health benefits are contingent on bioavailability after ingestion, the fate of these molecules during transit in the gastrointestinal tract (GIT) will dictate their utility as functional food ingredients. This brief review explores diverse applications of protein-polyphenol particles in the food industry and the bioaccessibility of both bioactive polyphenolic compounds and edible proteins. Evidence to date suggests that complexation of phytoactive polyphenolics effectively enhances their health-relevant impacts, specifically because the phytoactives are protected in the protein matrix during transit in the GIT, allowing intact, non-degraded molecules to reach the colon for catabolism at the gut microbiome level, a prerequisite to realize the health benefits of these active compounds.}, journal={JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY}, publisher={American Chemical Society (ACS)}, author={Lila, Mary Ann and Hoskin, Roberta Targino and Grace, Mary H. and Xiong, Jia and Strauch, Renee and Ferruzzi, Mario and Iorizzo, Massimo and Kay, Colin}, year={2022}, month={Apr} } @article{strauch_lila_2021, title={Pea protein isolate characteristics modulate functional properties of pea protein-cranberry polyphenol particles}, volume={5}, ISSN={["2048-7177"]}, url={https://doi.org/10.1002/fsn3.2335}, DOI={10.1002/fsn3.2335}, abstractNote={AbstractPlant polyphenols have a natural binding affinity for proteins, and their interaction can be exploited to form diverse aggregate particles. Protein–polyphenol particles utilized as food ingredients allow consumers to incorporate more health‐benefiting plant bioactives into their diets. The functional properties of the protein–polyphenol particles can be influenced by many factors, including complexation conditions and starting material properties. Here, cranberry polyphenols extracted from pomace were complexed with nine pea protein isolate starting materials with different physical (particle size and protein content) and chemical (hydrolyzed and oxidized) properties to investigate the impact of protein characteristics on particle functionality. Chemical differences between proteins affected polyphenol binding; oxidized protein isolate (specifically, VegOtein N) bound 12%–27% more polyphenols than other isolates. Polyphenol binding to proteins decreased digestion rates in vitro, averaging 25% slower gastric (pepsin) digestion and a 35% slower intestinal (pancreatin) digestion. Physical differences in protein starting materials affected digestibility; isolate with the largest particle size (specifically, Nutralys F85G) produced particles with the lowest digestion rate. Solubility was impacted by both the process of forming particles and by polyphenol binding; control particles were 56% less soluble, and protein–polyphenol particles up to 75% less soluble, than unmodified proteins. The solubility of unmodified protein isolate starting materials varied widely according to the manufacturing process, but, after complexation, protein–polyphenol particles produced from all protein sources exhibited a similar depressed level of solubility. The desired functional properties of the protein–polyphenol particle food ingredients will be considerably influenced by the properties of the protein isolate starting material.}, journal={FOOD SCIENCE & NUTRITION}, publisher={Wiley}, author={Strauch, Renee Cilliers and Lila, Mary Ann}, year={2021}, month={May} } @misc{kay_strauch_granillo_bame_xiong_mast_burton-freeman_kay_lila_2022, title={The berry health tool chest - an evidence map and interactive resource}, volume={80}, ISSN={["1753-4887"]}, DOI={10.1093/nutrit/nuab011}, abstractNote={Abstract Berry consumption is linked to diverse health benefits, but numerous questions remain regarding mechanism of action, dose efficacy, and optimal duration and frequency of intake. Addressing these outstanding questions requires an organized assessment of current research, to inform future study designs and fill critical knowledge gaps. Tools that organize such information will also facilitate consumer messaging, targeted nutritional health initiatives, and dietary intake guidelines. This review aimed to describe the development and utility of the “Berry Health Tool Chest,” an evidence map summarizing trial design features of studies characterizing the impact of berry consumption upon human health biomarkers. A systematic search strategy identified relevant high-quality human feeding studies, whose study design parameters were collected and compiled into an evidence map that is freely available as an interactive online interface enabling tabulated data to be interrogated, filtered, and exported. Of the 231 included studies, approximately 70% were of less than 3 months’ duration and/or fewer than 50 participants, illustrating research gaps that could potentially inform the design of future studies.}, number={1}, journal={NUTRITION REVIEWS}, author={Kay, Kristine L. and Strauch, Renee C. and Granillo, Cheryl D. and Bame, Megan W. and Xiong, Jia and Mast, Aubrey C. and Burton-Freeman, Britt and Kay, Colin D. and Lila, Mary Ann}, year={2022}, month={Jan}, pages={68–77} } @article{strauch_mengist_pan_yousef_iorizzo_brown_lila_2019, title={Variation in anthocyanin profiles of 27 genotypes of red cabbage over two growing seasons}, volume={301}, ISSN={["1873-7072"]}, url={https://doi.org/10.1016/j.foodchem.2019.125289}, DOI={10.1016/j.foodchem.2019.125289}, abstractNote={Acylated anthocyanins, such as those found in red cabbage, are more heat-, light-, and alkaline pH-stable than non-acylated anthocyanins, making them attractive for a variety of commercial applications. A UPLC-DAD-MSE method with an optimized chromatographic strategy was used to identify 29 red cabbage anthocyanins, predominantly acylated and glucosylated cyanidin derivatives. Anthocyanin profiles of 27 red cabbage genotypes harvested in consecutive growing seasons were measured and assessed for variation. Three unique anthocyanin profile fingerprints were identified through hierarchical clustering analysis. PCA analysis identified anthocyanin accumulation traits and genotypes with high diversity which can be utilized in future investigations into the genetic and molecular basis for anthocyanin production, acylation, and diversity.}, journal={FOOD CHEMISTRY}, publisher={Elsevier BV}, author={Strauch, Renee C. and Mengist, Molla F. and Pan, Kevin and Yousef, Gad G. and Iorizzo, Massimo and Brown, Allan F. and Lila, Mary Ann}, year={2019}, month={Dec} } @article{esposito_damsud_wilson_grace_strauch_li_lila_komarnytsky_2015, title={Black Currant Anthocyanins Attenuate Weight Gain and Improve Glucose Metabolism in Diet-Induced Obese Mice with Intact, but Not Disrupted, Gut Microbiome}, volume={63}, ISSN={["1520-5118"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84937064835&partnerID=MN8TOARS}, DOI={10.1021/acs.jafc.5b00963}, abstractNote={Black currant (Ribes nigrum L.) is a rich source of anthocyanins; however, the relationship between their apparently limited bioavailability and significant protection against metabolic pathologies is poorly understood. This study examined the gastrointestinal distribution of black currant anthocyanins and their phenolic acid metabolites in lean and diet-induced obese mice with healthy and antibiotic-disrupted microbiomes. Daily consumption of low- or high-fat diet supplemented with 1% black currant powdered extract (32% anthocyanins) for 8 weeks reduced body weight gain and improved glucose metabolism only in mice with the intact gut microbiome. Administration of antibiotic cocktail resulted in a 16-25-fold increase (P < 0.001) in anthocyanin content of feces, and cyanidin-based anthocyanins showed the largest increase in fecal content upon disruption of gut microbiome (92.3 ± 16.3 vs 4719 ± 158 μg/g feces), indicating their high susceptibility to microbial degradation in the gut. A 3-fold enrichment (P < 0.05) in gallic over protocatechuic acid was observed in the jejunum of both intact and antibiotic-treated animals, suggesting that this effect was likely independent of their gut microbiome status. Taken together, the data clearly demonstrate that gut microbiome and the type of the anthocyanin aglycone moiety can alter the protective effect of anthocyanins against obesity and associated insulin resistance.}, number={27}, journal={JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY}, publisher={American Chemical Society (ACS)}, author={Esposito, Debora and Damsud, Thanakorn and Wilson, Mickey and Grace, Mary H. and Strauch, Renee and Li, Xu and Lila, Mary Ann and Komarnytsky, Slavko}, year={2015}, month={Jul}, pages={6172–6180} } @article{strauch_svedin_dilkes_chapple_li_2015, title={Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana}, volume={112}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.1503272112}, abstractNote={Significance We describe how untargeted metabolic profiling and genome-wide association analysis was used in Arabidopsis thaliana to link natural products (secondary metabolites) with genes controlling their production. This powerful approach exposed metabolite–enzyme connections even without prior knowledge of the metabolite identity or the biochemical function of the associated enzyme. Further chemical and genetic analysis synergistically led to the discovery and characterization of a d -amino acid derivative, N -malonyl- d -allo-isoleucine, and a novel amino acid racemase responsible for its biosynthesis. Little is known about d -amino acid metabolism and its natural variation in plants. Additionally, this is the first functional characterization of a eukaryotic member of a large family of phenazine biosynthesis protein phzF-like proteins conserved across all the kingdoms. }, number={37}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Strauch, Renee C. and Svedin, Elisabeth and Dilkes, Brian and Chapple, Clint and Li, Xu}, year={2015}, month={Sep}, pages={11726–11731} } @article{wang_he_strauch_olukolu_nielsen_li_balint-kurti_2015, title={Maize homologs of hydroxycinnamoyltransferase, a key enzyme in lignin biosynthesis, bind the nucleotide binding leucine-rich repeat Rp1 proteins to modulate the defense response}, volume={169}, number={3}, journal={Plant Physiology}, author={Wang, G. F. and He, Y. J. and Strauch, R. and Olukolu, B. A. and Nielsen, D. and Li, X. and Balint-Kurti, P. J.}, year={2015}, pages={2230–2243} }