@article{box_dunnagan_hirsh_cherry_christianson_gibson_wolfe_gallardo-williams_2017, title={Qualitative and Quantitative Evaluation of Three Types of Student Generated Videos as Instructional Support in Organic Chemistry Laboratories}, volume={94}, ISSN={["1938-1328"]}, DOI={10.1021/acs.jchemed.6b00451}, abstractNote={This study was designed to evaluate the effectiveness of student-generated videos as a supplement to teaching assistant (TA) instruction in an undergraduate organic chemistry laboratory. Three videos covering different aspects of lab instruction (experimental technique, use of instrumentation, and calculations) were produced using student-generated scripts. A laboratory classroom was outfitted with video cameras and sound recording equipment that allowed the research team to monitor all TA–student and student–student interactions. Six course sections led by three randomly assigned TAs were selected. Two sections from each TA were observed (control and treatment), each at the same time of day, 1 week apart. Students in the control group had their TA conduct the lab briefing and supervise the lab, but were given no access to the instructional videos. The treatment group had videos available to supplement the TA’s lab briefing but was otherwise identical to the control group. Both groups were given a questio...}, number={2}, journal={JOURNAL OF CHEMICAL EDUCATION}, publisher={American Chemical Society (ACS)}, author={Box, Melinda C. and Dunnagan, Cathi L. and Hirsh, Lauren A. S. and Cherry, Clinton R. and Christianson, Kayla A. and Gibson, Radiance J. and Wolfe, Michael I. and Gallardo-Williams, Maria T.}, year={2017}, month={Feb}, pages={164–170} } @article{nepomuceno_gibson_randall_muddiman_2014, title={Accurate Identification of Deamidated Peptides in Global Proteomics Using a Quadrupole Orbitrap Mass Spectrometer}, volume={13}, ISSN={["1535-3907"]}, DOI={10.1021/pr400848n}, abstractNote={Deamidation of asparagine and glutamine residues is a common post-translational modification. Researchers often rely on mass spectrometric based proteomic techniques for the identification of these post-translational sites. Mass spectral analysis of deamidated peptides is complicated and often misassigned due to overlapping (13)C peak of the amidated form with the deamidated monoisotopic peak; these two peaks are only separated by 19.34 mDa. For proper assignment, it is inherently important to use a mass spectrometer with high mass measurement accuracy and high resolving power. Herein, mouse brain tissue lysate was prepared using filter-aided sample preparation (FASP) method and Stage Tip fractionation followed by analysis on a nanoLC coupled with a quadrupole orbitrap (Q-Exactive) mass spectrometer to accurately identify more than 5400 proteins. Mass spectral data was processed using MASCOT and ProteoIQ for accurate identification of peptides and proteins. MASCOT search values for precursor and MS/MS mass tolerances were investigated, and it was determined that data searched with greater than 5 ppm precursor mass tolerance resulted in the misassignment of deamidated peptides. Peptides that were identified with a mass measurement accuracy of ±5 ppm were correctly assigned.}, number={2}, journal={JOURNAL OF PROTEOME RESEARCH}, author={Nepomuceno, Angelito I. and Gibson, Radiance J. and Randall, Shan M. and Muddiman, David C.}, year={2014}, month={Feb}, pages={777–785} }