@article{twiddy_peterson_maddocks_macpherson_pimentel_yates_armitano-lago_kiefer_pietrosimone_franz_et al._2022, title={A Low-Cost, Open Source Wireless Body Area Network for Clinical Gait Rehabilitation}, ISSN={["1930-0395"]}, DOI={10.1109/SENSORS52175.2022.9967362}, abstractNote={Wearable inertial sensors represent an opportunity to enable gait monitoring and feedback-based rehabilitation in real-world environments. Here, we describe the development of an inexpensive I MU-based wireless body area network capable of recording 9-axis motion data from 8 sites on the body simultaneously. This system can generate data comparable to existing commercial sensor networks and can distinguish varying loading conditions observed during real-time biofeedback-based human subject testing.}, journal={2022 IEEE SENSORS}, author={Twiddy, Jack and Peterson, Kaila and Maddocks, Grace and MacPherson, Ryan and Pimentel, Ricky and Yates, Max and Armitano-Lago, Cortney and Kiefer, Adam and Pietrosimone, Brian and Franz, Jason and et al.}, year={2022} } @article{pimentel_feldman_lewek_franz_2022, title={Quantifying mechanical and metabolic interdependence between speed and propulsive force during walking}, volume={4}, ISSN={["2624-9367"]}, DOI={10.3389/fspor.2022.942498}, abstractNote={Walking speed is a useful surrogate for health status across the population. Walking speed appears to be governed in part by interlimb coordination between propulsive (FP) and braking (FB) forces generated during step-to-step transitions and is simultaneously optimized to minimize metabolic cost. Of those forces, FP generated during push-off has received significantly more attention as a contributor to walking performance. Our goal was to first establish empirical relations between FP and walking speed and then to quantify their effects on metabolic cost in young adults. To specifically address any link between FP and walking speed, we used a self-paced treadmill controller and real-time biofeedback to independently prescribe walking speed or FP across a range of condition intensities. Walking with larger and smaller FP led to instinctively faster and slower walking speeds, respectively, with ~80% of variance in walking speed explained by FP. We also found that comparable changes in either FP or walking speed elicited predictable and relatively uniform changes in metabolic cost, together explaining ~53% of the variance in net metabolic power and ~14% of the variance in cost of transport. These results provide empirical data in support of an interdependent relation between FP and walking speed, building confidence that interventions designed to increase FP will translate to improved walking speed. Repeating this protocol in other populations may identify other relations that could inform the time course of gait decline due to age and disease.}, journal={FRONTIERS IN SPORTS AND ACTIVE LIVING}, author={Pimentel, Richard E. and Feldman, Jordan N. and Lewek, Michael D. and Franz, Jason R.}, year={2022}, month={Sep} } @article{pimentel_potter_carollo_howell_sweeney_2020, title={Peak sagittal plane spine kinematics in female gymnasts with and without a history of low back pain}, volume={76}, ISSN={["1879-1271"]}, DOI={10.1016/j.clinbiomech.2020.105019}, abstractNote={Background Female gymnasts have a greater prevalence of back pain compared to other female athletes. There is little evidence that female artistic gymnasts with and without back pain demonstrate different movement patterns during gymnastics skills. The purpose of this study was to determine if there were differences in back movements during back walkovers and back handsprings among female artistic gymnasts. Methods Female artistic gymnasts (8–18 years old) with and without back pain wore inertial sensors on their torso, arms, and legs while performing back walkovers (N = 14) and back handsprings (N = 15) on the floor and balance beam at their training gymnastics facilities. Findings Gymnasts with back pain had similar spine peak extension, peak flexion, and range of motion during back walkovers and back handsprings compared to gymnasts without back pain. Additionally, no differences in sagittal plane spine kinematics were found between the groups at any specific time point during either the back walkover or back handspring skills. However, a large portion of the data collected was excluded during quality assurance, thus our final sample sizes are small. Interpretation These findings suggest that gymnasts with back pain have similar sagittal plane movements to those without back pain. The relationship between back pain and gymnastics training load/intensity is currently unclear. We suggest future studies to investigate common artistic gymnastics skills and back pain prevalence with more participants, full-body motion analysis with kinetic measurement capabilities, and longitudinally for those demonstrating back pain.}, journal={CLINICAL BIOMECHANICS}, author={Pimentel, Ricky and Potter, Morgan N. and Carollo, James J. and Howell, David R. and Sweeney, Emily A.}, year={2020}, month={Jun} }