@article{prodromou_moore_chu_deal_san miguel_brown_daniele_pozdin_menegatti_2023, title={Molecular Engineering of Cyclic Azobenzene‐Peptide Hybrid Ligands for the Purification of Human Blood Factor VIII via Photo‐Affinity Chromatography}, volume={33}, ISSN={1616-301X 1616-3028}, url={http://dx.doi.org/10.1002/adfm.202213881}, DOI={10.1002/adfm.202213881}, abstractNote={Abstract}, number={14}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Prodromou, Raphael and Moore, Brandyn David and Chu, Wenning and Deal, Halston and San Miguel, Adriana and Brown, Ashley Carson and Daniele, Michael Angelo‐Anthony and Pozdin, Vladimir Aleksandrovich and Menegatti, Stefano}, year={2023}, month={Jan} } @article{chu_shastry_barbieri_prodromou_greback-clarke_smith_moore_kilgore_cummings_pancorbo_et al._2023, title={Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates}, volume={7}, ISSN={["1097-0290"]}, DOI={10.1002/bit.28495}, abstractNote={Abstract}, journal={BIOTECHNOLOGY AND BIOENGINEERING}, author={Chu, Wenning and Shastry, Shriarjun and Barbieri, Eduardo and Prodromou, Raphael and Greback-Clarke, Paul and Smith, Will and Moore, Brandyn and Kilgore, Ryan and Cummings, Christopher and Pancorbo, Jennifer and et al.}, year={2023}, month={Jul} } @article{chu_prodromou_moore_elhanafi_kilgore_shastry_menegatti_2022, title={Development of peptide ligands for the purification of a-1 antitrypsin from cell culture fluids}, volume={1679}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2022.463363}, abstractNote={α-1 antitrypsin (AAT) deficiency, a major risk factor for chronic obstructive pulmonary disease, is one of the most prevalent and fatal hereditary diseases. The rising demand of AAT poses a defined need for new processes of AAT manufacturing from recombinant sources. Commercial affinity adsorbents for AAT purification present the intrinsic limitations of protein ligands - chiefly, the high cost and the lability towards the proteases in the feedstocks and the cleaning-in-place utilized in biomanufacturing - which limit their application despite their high capacity and selectivity. This work presents the development of small peptide affinity ligands for the purification of AAT from Chinese hamster ovary (CHO) cell culture harvests. An ensemble of ligand candidates identified via library screening were conjugated on Toyopearl resin and evaluated via experimental and in silico AAT-binding studies. Initial ranking based on equilibrium binding capacity indicated WHAKKSKFG- (12.9 mg of AAT per mL of resin), WHAKKSHFG- (16.3 mg/mL), and KWKHSHKWG- (15.8 mg/mL) Toyopearl resins as top performing adsorbents. Notably, the fitting of adsorption data to Langmuir isotherms concurred with molecular docking and dynamics in returning values of dissociation constant (KD) between 1 - 10 µM. These peptide-based adsorbents were thus selected for AAT purification from CHO fluids, affording values of AAT binding capacity up to 13 gram per liter of resin, and product yield and purity up to 77% and 97%. WHAKKSHFG-Toyopearl resin maintained its purification activity upon 20 consecutive uses, demonstrating its potential for AAT manufacturing from recombinant sources.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Chu, Wenning and Prodromou, Raphael and Moore, Brandyn and Elhanafi, Driss and Kilgore, Ryan and Shastry, Shriarjun and Menegatti, Stefano}, year={2022}, month={Aug} } @article{prodromou_day_saberi-bosari_schneible_mabe_san miguel_daniele_pozdin_menegatti_2021, title={Engineering Next Generation Cyclized Peptide Ligands for Light-Controlled Capture and Release of Therapeutic Proteins}, volume={31}, ISSN={["1616-3028"]}, url={http://dx.doi.org/10.1002/adfm.202101410}, DOI={10.1002/adfm.202101410}, abstractNote={Abstract}, number={27}, journal={ADVANCED FUNCTIONAL MATERIALS}, publisher={Wiley}, author={Prodromou, Raphael and Day, Kevin N. and Saberi-Bosari, Sahand and Schneible, John D. and Mabe, Matthew D. and San Miguel, Adriana and Daniele, Michael A. and Pozdin, Vladimir and Menegatti, Stefano}, year={2021}, month={Jul} } @article{chu_prodromou_day_schneible_bacon_bowen_kilgore_catella_moore_mabe_et al._2021, title={Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics}, volume={1635}, ISSN={["1873-3778"]}, DOI={10.1016/j.chroma.2020.461632}, abstractNote={Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.}, journal={JOURNAL OF CHROMATOGRAPHY A}, author={Chu, Wenning and Prodromou, Raphael and Day, Kevin N. and Schneible, John D. and Bacon, Kaitlyn B. and Bowen, John D. and Kilgore, Ryan E. and Catella, Carly M. and Moore, Brandyn D. and Mabe, Matthew D. and et al.}, year={2021}, month={Jan} } @article{barozzi_lavoie_day_prodromou_menegatti_2020, title={Affibody-Binding Ligands}, volume={21}, ISSN={["1422-0067"]}, url={https://www.mdpi.com/1422-0067/21/11/3769}, DOI={10.3390/ijms21113769}, abstractNote={While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody–peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64–71% and 86–91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes.}, number={11}, journal={INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES}, author={Barozzi, Annalisa and Lavoie, R. Ashton and Day, Kevin N. and Prodromou, Raphael and Menegatti, Stefano}, year={2020}, month={Jun} } @article{day_schneible_young_pozdin_driessche_gaffney_prodromou_freytes_fourches_daniele_et al._2020, title={Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides}, volume={8}, ISSN={["2050-7518"]}, DOI={10.1039/d0tb01189d}, abstractNote={Light-controlled switching of cell-binding activity of fluorescently-labeled peptides for on-demand cell labeling.}, number={33}, journal={JOURNAL OF MATERIALS CHEMISTRY B}, author={Day, Kevin and Schneible, John D. and Young, Ashlyn T. and Pozdin, Vladimir A. and Driessche, George and Gaffney, Lewis A. and Prodromou, Raphael and Freytes, Donald O. and Fourches, Denis and Daniele, Michael and et al.}, year={2020}, month={Sep}, pages={7413–7427} } @article{saberi-bosari_omary_lavoie_prodromou_day_menegatti_san-miguel_2019, title={Affordable Microfluidic Bead-Sorting Platform for Automated Selection of Porous Particles Functionalized with Bioactive Compounds}, volume={9}, ISSN={["2045-2322"]}, url={http://dx.doi.org/10.1038/s41598-019-42869-5}, DOI={10.1038/s41598-019-42869-5}, abstractNote={Abstract}, number={1}, journal={SCIENTIFIC REPORTS}, publisher={Springer Science and Business Media LLC}, author={Saberi-Bosari, Sahand and Omary, Mohammad and Lavoie, Ashton and Prodromou, Raphael and Day, Kevin and Menegatti, Stefano and San-Miguel, Adriana}, year={2019}, month={May} } @article{day_prodromou_bosari_lavoie_omary_market_san miguel_menegatti_2019, title={Discovery and Evaluation of Peptide Ligands for Selective Adsorption and Release of Cas9 Nuclease on Solid Substrates}, volume={30}, ISSN={["1520-4812"]}, url={http://dx.doi.org/10.1021/acs.bioconjchem.9b00703}, DOI={10.1021/acs.bioconjchem.9b00703}, abstractNote={The rapid expansion of CRISPR in biotechnology, medicine, and bioprocessing poses an urgent need for advanced manufacturing of Cas nucleases. The lack of Cas-targeting ligands, however, prevents the development of platform processes for purifying this class of molecules. This work represents the first effort at developing short synthetic Cas9-binding peptides and demonstrates their applicability as affinity ligands for the purification of a Cas nuclease. Candidate Cas9-targeting peptides were initially identified by screening a solid-phase peptide library against a model mixture of Streptococcus pyogenes Cas9 spiked in Escherichia coli cell lysate. An ensemble of homologous sequences were identified, conjugated on Toyopearl resin, and evaluated by Cas9 binding studies to identify sequences providing selective Cas9 capture and efficient release. In silico docking studies were also performed to evaluate the binding energy and site of the various peptides on Cas9. Notably, sequences GYYRYSEY and YYHRHGLQ were shown to target the RecII domain of Cas9, which is not involved in nuclease activity, and was targeted as ideal binding site. The peptide ligands were validated by purifying Cas9 from the E. coli lysate in dynamic conditions and through measurements of binding capacity and strength (Qmax and KD). The resulting values of Qmax = 4 - 5 mg Cas9 per mL of resin and KD ~ 0.1 - 0.3 μM, and product recovery (86 - 89%) and purity (91% - 93%) indicate that both peptides, and YYHRHGLQ in particular, can serve as capture ligands in a platform purification process of Cas9.}, number={12}, journal={BIOCONJUGATE CHEMISTRY}, publisher={American Chemical Society (ACS)}, author={Day, Kevin and Prodromou, Raphael and Bosari, Sahand Saberi and Lavoie, Ashton and Omary, Mohammad and Market, Connor and San Miguel, Adriana and Menegatti, Stefano}, year={2019}, month={Dec}, pages={3057–3068} }