@article{lipscomb_conway_blumer-schuette_kelly_adams_2016, title={A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii}, volume={82}, ISSN={["1098-5336"]}, DOI={10.1128/aem.00570-16}, abstractNote={ABSTRACT Caldicellulosiruptor bescii , an anaerobic Gram-positive bacterium with an optimal growth temperature of 78°C, is the most thermophilic cellulose degrader known. It is of great biotechnological interest, as it efficiently deconstructs nonpretreated lignocellulosic plant biomass. Currently, its genetic manipulation relies on a mutant uracil auxotrophic background strain that contains a random deletion in the pyrF genome region. The pyrF gene serves as a genetic marker to select for uracil prototrophy, and it can also be counterselected for loss via resistance to the compound 5-fluoroorotic acid (5-FOA). To expand the C. bescii genetic tool kit, kanamycin resistance was developed as a selection for genetic manipulation. A codon-optimized version of the highly thermostable kanamycin resistance gene (named Cb htk ) allowed the use of kanamycin selection to obtain transformants of either replicating or integrating vector constructs in C. bescii . These strains showed resistance to kanamycin at concentrations >50 μg · ml −1 , whereas wild-type C. bescii was sensitive to kanamycin at 10 μg · ml −1 . In addition, placement of the Cb htk marker between homologous recombination regions in an integrating vector allowed direct selection of a chromosomal mutation using both kanamycin and 5-FOA. Furthermore, the use of kanamycin selection enabled the targeted deletion of the pyrE gene in wild-type C. bescii , generating a uracil auxotrophic genetic background strain resistant to 5-FOA. The pyrE gene functioned as a counterselectable marker, like pyrF , and was used together with Cb htk in the Δ pyrE background strain to delete genes encoding lactate dehydrogenase and the CbeI restriction enzyme. IMPORTANCE Caldicellulosiruptor bescii is a thermophilic anaerobic bacterium with an optimal growth temperature of 78°C, and it has the ability to efficiently deconstruct nonpretreated lignocellulosic plant biomass. It is, therefore, of biotechnological interest for genetic engineering applications geared toward biofuel production. The current genetic system used with C. bescii is based upon only a single selection strategy, and this uses the gene involved in a primary biosynthetic pathway. There are many advantages with an additional genetic selection using an antibiotic. This presents a challenge for thermophilic microorganisms, as only a limited number of antibiotics are stable above 50°C, and a thermostable version of the enzyme conferring antibiotic resistance must be obtained. In this work, we have developed a selection system for C. bescii using the antibiotic kanamycin and have shown that, in combination with the biosynthetic gene marker, it can be used to efficiently delete genes in this organism. }, number={14}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Lipscomb, Gina L. and Conway, Jonathan M. and Blumer-Schuette, Sara E. and Kelly, Robert M. and Adams, Michael W. W.}, year={2016}, month={Jul}, pages={4421–4428} } @article{conway_pierce_le_harper_wright_tucker_zurawski_lee_blumer-schuette_kelly_2016, title={Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species}, volume={291}, ISSN={["1083-351X"]}, DOI={10.1074/jbc.m115.707810}, abstractNote={The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensis encodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptor species genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique to C. kronotskyensis and contains SLH domains. Calkro_0111 was produced recombinantly in Escherichia coli as two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the β-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs in C. kronotskyensis, when produced in E. coli, was active on a variety of xylans and β-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptor and among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii. As such, the gene encoding Calkro_0402 was inserted into the C. bescii genome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-type C. bescii. The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptor species.}, number={13}, journal={JOURNAL OF BIOLOGICAL CHEMISTRY}, author={Conway, Jonathan M. and Pierce, William S. and Le, Jaycee H. and Harper, George W. and Wright, John H. and Tucker, Allyson L. and Zurawski, Jeffrey V. and Lee, Laura L. and Blumer-Schuette, Sara E. and Kelly, Robert M.}, year={2016}, month={Mar}, pages={6732–6747} } @article{zurawski_conway_lee_simpson_izquierdo_blumer-schuette_nookaew_adams_kelly_2015, title={Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization}, volume={81}, ISSN={["1098-5336"]}, DOI={10.1128/aem.01622-15}, abstractNote={ABSTRACT Microbiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO 2 , and H 2 . Caldicellulosiruptor bescii , C. kronotskyensis , and C. saccharolyticus solubilized 38%, 36%, and 29% (by weight) of unpretreated switchgrass ( Panicum virgatum ) (5 g/liter), respectively, which was about half of the amount of crystalline cellulose (Avicel; 5 g/liter) that was solubilized under the same conditions. The lower yields with C. saccharolyticus , not appreciably greater than the thermal control for switchgrass, were unexpected, given that its genome encodes the same glycoside hydrolase 9 (GH9)-GH48 multidomain cellulase (CelA) found in the other two species. However, the genome of C. saccharolyticus lacks two other cellulases with GH48 domains, which could be responsible for its lower levels of solubilization. Transcriptomes for growth of each species comparing cellulose to switchgrass showed that many carbohydrate ABC transporters and multidomain extracellular glycoside hydrolases were differentially regulated, reflecting the heterogeneity of lignocellulose. However, significant differences in transcription levels for conserved genes among the three species were noted, indicating unexpectedly diverse regulatory strategies for deconstruction for these closely related bacteria. Genes encoding the Che-type chemotaxis system and flagellum biosynthesis were upregulated in C. kronotskyensis and C. bescii during growth on cellulose, implicating motility in substrate utilization. The results here show that capacity for plant biomass deconstruction varies across Caldicellulosiruptor species and depends in a complex way on GH genome inventory, substrate composition, and gene regulation. }, number={20}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Zurawski, Jeffrey V. and Conway, Jonathan M. and Lee, Laura L. and Simpson, Hunter J. and Izquierdo, Javier A. and Blumer-Schuette, Sara and Nookaew, Intawat and Adams, Michael W. W. and Kelly, Robert M.}, year={2015}, month={Oct}, pages={7159–7170} } @article{blumer-schuette_alahuhta_conway_lee_zurawski_giannone_hettich_lunin_himmel_kelly_2015, title={Discrete and Structurally Unique Proteins (Tapirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose}, volume={290}, ISSN={["1083-351X"]}, DOI={10.1074/jbc.m115.641480}, abstractNote={Background: Lignocellulose-degrading microorganisms utilize binding modules associated with glycosidic enzymes to attach to polysaccharides. Results: Structurally unique, discrete proteins (tāpirins) bind to cellulose with a high affinity. Conclusion: Tāpirins represent a new class of proteins used by Caldicellulosiruptor species to attach to cellulose. Significance: The tāpirins establish a new paradigm for how cellulolytic bacteria adhere to cellulose. A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins (“tāpirins,” origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.}, number={17}, journal={JOURNAL OF BIOLOGICAL CHEMISTRY}, author={Blumer-Schuette, Sara E. and Alahuhta, Markus and Conway, Jonathan M. and Lee, Laura L. and Zurawski, Jeffrey V. and Giannone, Richard J. and Hettich, Robert L. and Lunin, Vladimir V. and Himmel, Michael E. and Kelly, Robert M.}, year={2015}, month={Apr}, pages={10645–10656} } @article{frock_montero_blumer-schuette_kelly_2013, title={Stationary Phase and Nutrient Levels Trigger Transcription of a Genomic Locus Containing a Novel Peptide (TM1316) in the Hyperthermophilic Bacterium Thermotoga maritima}, volume={79}, ISSN={["1098-5336"]}, DOI={10.1128/aem.01627-13}, abstractNote={ABSTRACT The genome of the hyperthermophilic bacterium Thermotoga maritima encodes numerous putative peptides/proteins of 100 amino acids or less. While most of these open reading frames (ORFs) are transcribed during growth, their corresponding physiological roles are largely unknown. The onset of stationary phase in T. maritima was accompanied by significant morphological changes and upregulation of several ORFs located in the TM1298-TM1336 genome locus. This region contains putative HicAB toxin-antitoxin pairs, hypothetical proteins, radical S -adenosylmethionine (SAM) enzymes, and ABC transporters. Of particular note was the TM1315-TM1319 operon, which includes a putative 31-amino-acid peptide (TM1316) that was the most highly transcribed gene in the transcriptome during stationary phase. Antibodies directed against a synthetic version of TM1316 were used to track its production, which correlated closely with transcriptomic data. Immunofluorescence microscopy revealed that TM1316 was localized to the cell envelope and prominent in cell aggregates formed during stationary phase. The only functionally characterized locus with an organization similar to that of TM1315-TM1319 is in Bacillus subtilis , which contains subtilosin A, a cyclic peptide with Cys–to–α-carbon linkages that functions as an antilisterial bacteriocin. While the organization of TM1316 resembled that of the Bacillus peptide (e.g., in its number of amino acids and spacing of Cys residues), preparations containing high levels of TM1316 affected the growth of neither Thermotoga species nor Pyrococcus furiosus , a hyperthermophilic archaeon isolated from the same locale as T. maritima . Several other putative Cys-rich peptides could be identified in the TM1298-TM1336 locus, and while their roles are also unclear, they merit examination as potential antimicrobial agents in hyperthermophilic biotopes. }, number={21}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Frock, Andrew D. and Montero, Clemente I. and Blumer-Schuette, Sara E. and Kelly, Robert M.}, year={2013}, month={Nov}, pages={6637–6646} } @misc{blumer-schuette_brown_sander_bayer_kataeva_zurawski_conway_adams_kelly_2014, title={Thermophilic lignocellulose deconstruction}, volume={38}, ISSN={["1574-6976"]}, DOI={10.1111/1574-6976.12044}, abstractNote={Thermophilic microorganisms are attractive candidates for conversion of lignocellulose to biofuels because they produce robust, effective, carbohydrate-degrading enzymes and survive under harsh bioprocessing conditions that reflect their natural biotopes. However, no naturally occurring thermophile is known that can convert plant biomass into a liquid biofuel at rates, yields and titers that meet current bioprocessing and economic targets. Meeting those targets requires either metabolically engineering solventogenic thermophiles with additional biomass-deconstruction enzymes or engineering plant biomass degraders to produce a liquid biofuel. Thermostable enzymes from microorganisms isolated from diverse environments can serve as genetic reservoirs for both efforts. Because of the sheer number of enzymes that are required to hydrolyze plant biomass to fermentable oligosaccharides, the latter strategy appears to be the preferred route and thus has received the most attention to date. Thermophilic plant biomass degraders fall into one of two categories: cellulosomal (i.e. multienzyme complexes) and noncellulosomal (i.e. 'free' enzyme systems). Plant-biomass-deconstructing thermophilic bacteria from the genera Clostridium (cellulosomal) and Caldicellulosiruptor (noncellulosomal), which have potential as metabolic engineering platforms for producing biofuels, are compared and contrasted from a systems biology perspective.}, number={3}, journal={FEMS MICROBIOLOGY REVIEWS}, author={Blumer-Schuette, Sara E. and Brown, Steven D. and Sander, Kyle B. and Bayer, Edward A. and Kataeva, Irina and Zurawski, Jeffrey V. and Conway, Jonathan M. and Adams, Michael W. W. and Kelly, Robert M.}, year={2014}, month={May}, pages={393–448} } @article{bielen_verhaart_vanfossen_blumer-schuette_stams_oost_kelly_kengen_2013, title={A thermophile under pressure: Transcriptional analysis of the response of Caldicellulosiruptor saccharolyticus to different H-2 partial pressures}, volume={38}, ISSN={["1879-3487"]}, DOI={10.1016/j.ijhydene.2012.11.082}, abstractNote={Increased hydrogen (H2) levels are known to inhibit H2 formation in Caldicellulosiruptor saccharolyticus. To investigate this organism's strategy for dealing with elevated H2 levels the effect of the hydrogen partial pressure (PH2) on fermentation performance was studied by growing cultures under high and low PH2 in a glucose limited chemostat setup. Transcriptome analysis revealed the upregulation of genes involved in the disposal of reducing equivalents under high PH2, like lactate dehydrogenase and alcohol dehydrogenase as well as the NADH-dependent and ferredoxin-dependent hydrogenases. These findings are in line with the observed shift in fermentation profiles from acetate production to the production of acetate, lactate and ethanol under high PH2. Moreover, differential transcription was observed for genes involved in carbon metabolism, fatty acid biosynthesis and several transport systems. In addition, presented transcription data provide evidence for the involvement of the redox sensing Rex protein in gene regulation under high PH2 cultivation conditions.}, number={4}, journal={INTERNATIONAL JOURNAL OF HYDROGEN ENERGY}, author={Bielen, Abraham A. M. and Verhaart, Marcel R. A. and VanFossen, Amy L. and Blumer-Schuette, Sara E. and Stams, Alfons J. M. and Oost, John and Kelly, Robert M. and Kengen, Serve W. M.}, year={2013}, month={Feb}, pages={1837–1849} } @article{blumer-schuette_giannone_zurawski_ozdemir_ma_yin_xu_kataeva_poole_adams_et al._2012, title={Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass}, volume={194}, ISSN={["1098-5530"]}, DOI={10.1128/jb.00266-12}, abstractNote={ABSTRACT Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose. }, number={15}, journal={JOURNAL OF BACTERIOLOGY}, author={Blumer-Schuette, Sara E. and Giannone, Richard J. and Zurawski, Jeffrey V. and Ozdemir, Inci and Ma, Qin and Yin, Yanbin and Xu, Ying and Kataeva, Irina and Poole, Farris L., II and Adams, Michael W. W. and et al.}, year={2012}, month={Aug}, pages={4015–4028} } @article{ozdemir_blumer-schuette_kelly_2012, title={S-Layer Homology Domain Proteins Csac_0678 and Csac_2722 Are Implicated in Plant Polysaccharide Deconstruction by the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus}, volume={78}, ISSN={["1098-5336"]}, DOI={10.1128/aem.07031-11}, abstractNote={ABSTRACT The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization. }, number={3}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Ozdemir, Inci and Blumer-Schuette, Sara E. and Kelly, Robert M.}, year={2012}, month={Feb}, pages={768–777} } @article{blumer-schuette_lewis_kelly_2010, title={Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus Caldicellulosiruptor}, volume={76}, ISSN={["1098-5336"]}, DOI={10.1128/aem.01400-10}, abstractNote={ABSTRACT Phylogenetic, microbiological, and comparative genomic analyses were used to examine the diversity among members of the genus Caldicellulosiruptor , with an eye toward the capacity of these extremely thermophilic bacteria to degrade the complex carbohydrate content of plant biomass. Seven species from this genus ( C. saccharolyticus , C. bescii , C. hydrothermalis , C. owensensis , C. kronotskyensis , C. lactoaceticus , and C. kristjanssonii ) were compared on the basis of 16S rRNA gene phylogeny and cross-species DNA-DNA hybridization to a whole-genome C. saccharolyticus oligonucleotide microarray, revealing that C. saccharolyticus was the most divergent within this group. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid-pretreated switchgrass, only C. saccharolyticus , C. bescii , C. kronotskyensis , and C. lactoaceticus were capable of hydrolyzing Whatman no. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that the cellulolytic species also had diverse secretome fingerprints. The C. saccharolyticus secretome contained a prominent S-layer protein that appears in the cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interactions. Growth physiology also correlated with glycoside hydrolase (GH) and carbohydrate-binding module (CBM) inventories for the seven bacteria, as deduced from draft genome sequence information. These inventories indicated that the absence of a single GH and CBM family was responsible for diminished cellulolytic capacity. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and this argues for continued efforts to isolate new members from high-temperature terrestrial biotopes. }, number={24}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Blumer-Schuette, Sara E. and Lewis, Derrick L. and Kelly, Robert M.}, year={2010}, month={Dec}, pages={8084–8092} } @misc{blumer-schuette_kataeva_westpheling_adams_kelly_2008, title={Extremely thermophilic microorganisms for biomass conversion: status and prospects}, volume={19}, ISSN={["0958-1669"]}, DOI={10.1016/j.copbio.2008.04.007}, abstractNote={Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea (T(opt)>or=80 degrees C) utilize alpha- and beta-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria (T(opt)>or=80 degrees C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 degrees C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by 'free' primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as 'secondary cellulases') reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as 'hypothetical proteins'. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.}, number={3}, journal={CURRENT OPINION IN BIOTECHNOLOGY}, author={Blumer-Schuette, Sara E. and Kataeva, Irina and Westpheling, Janet and Adams, Michael W. W. and Kelly, Robert M.}, year={2008}, month={Jun}, pages={210–217} } @article{conway_zurawski_lee_blumer-schuette_kelly, title={Lignocellulosic biomass deconstruction by the extremely thermophilic genus caldicellulosiruptor}, journal={Thermophilic Microorganisms}, author={Conway, J. M. and Zurawski, J. V. and Lee, L. L. and Blumer-Schuette, S. E. and Kelly, R. M.}, pages={91–119} }