@article{martin_melander_brackett_scott_chandler_nguyen_minrovic_harrill_ernst_manoil_et al._2019, title={Small Molecule Potentiation of Gram-Positive Selective Antibiotics against Acinetobacter baumannii}, volume={5}, ISSN={["2373-8227"]}, DOI={10.1021/acsinfecdis.9b00067}, abstractNote={In 2016, the World Health Organization deemed antibiotic resistance one of the biggest threats to global health, food security, and development. The need for new methods to combat infections caused by antibiotic resistant pathogens will require a variety of approaches to identifying effective new therapeutic strategies. One approach is the identification of small molecule adjuvants that potentiate the activity of antibiotics of demonstrated utility, whose efficacy is abated by resistance, both acquired and intrinsic. To this end, we have identified compounds that enhance the efficacy of antibiotics normally ineffective against Gram-negative pathogens because of the outer membrane permeability barrier. We identified two adjuvant compounds that dramatically enhance sensitivity of Acinetobacter baumannii to macrolide and glycopeptide antibiotics, with reductions in minimum inhibitory concentrations as high as 256-fold, and we observed activity across a variety of clinical isolates. Mode of action studies indicate that these adjuvants likely work by modulating lipopolysaccharide synthesis or assembly. The adjuvants were active in vivo in a Galleria mellonella infection model, indicating potential for use in mammalian infections.}, number={7}, journal={ACS INFECTIOUS DISEASES}, author={Martin, Sara E. and Melander, Roberta J. and Brackett, Christopher M. and Scott, Alison J. and Chandler, Courtney E. and Nguyen, Catherine M. and Minrovic, Bradley M. and Harrill, Sarah E. and Ernst, Robert K. and Manoil, Colin and et al.}, year={2019}, month={Jul}, pages={1223–1230} } @article{barker_martin_chandler_nguyen_harris_goodell_melander_doi_ernst_melander_2017, title={Small molecule adjuvants that suppress both chromosomal and mcr-1 encoded colistin-resistance and amplify colistin efficacy in polymyxin-susceptible bacteria}, volume={25}, ISSN={["1464-3391"]}, DOI={10.1016/j.bmc.2017.08.055}, abstractNote={Bacterial resistance to polymyxin antibiotics has taken on a new and more menacing form. Common are genomically-encoded resistance mechanisms to polymyxins, specifically colistin (polymyxin E), however, the plasmid-borne mobile colistin resistance-1 (mcr-1) gene has recently been identified and poses a new threat to global public health. Within six months of initial identification in Chinese swine in November 2015, the first human clinical isolation in the US was reported (Apr. 2016). Herein we report successful reversion of mcr-1-driven colistin resistance in Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli with adjuvants we previously reported as modulators of chromosomally-encoded colistin resistance. Further screening of our in-house library of nitrogen-dense heterocycles has identified additional chemical scaffolds that actively attenuate colistin resistance. Ultimately, we present a diverse cohort of adjuvants that both sensitize colistin-resistant and colistin-susceptible bacteria to this antibiotic, thus providing a potential avenue to both reduce colistin dosage and toxicity, and overcome colistin resistance.}, number={20}, journal={BIOORGANIC & MEDICINAL CHEMISTRY}, author={Barker, William T. and Martin, Sara E. and Chandler, Courtney E. and Nguyen, T. Vu. and Harris, Tyler L. and Goodell, Christopher and Melander, Roberta J. and Doi, Yohei and Ernst, Robert K. and Melander, Christian}, year={2017}, month={Oct}, pages={5749–5753} }