@article{rogers_schwartz_2017, title={Tensile fatigue behavior and crack growth in GdBa2Cu3O7-(x)/stainless-steel coated conductor grown via reactive co-evaporation}, volume={30}, ISSN={["1361-6668"]}, DOI={10.1088/1361-6668/aa604e}, abstractNote={(RE)Ba2Cu3O7−x (REBCO) conductors have the potential to enable a wide range of superconducting applications over a range of temperatures and magnetic fields (Vincent et al 2013 IEEE Trans. Appl. Supercond. 23 5700805), yet AC applications and devices with a charge/discharge cycle may be limited by the conductor fatigue properties. Here the fatigue behavior of GdBa2Cu3O7−x (GdBCO) conductors grown by reactive co-evaporation on stainless-steel substrates is reported for axial tensile strains, ε, up to 0.5% and 100 000 cycles. Failure mechanisms are investigated via microstructural studies and compared with a commercially available IBAD/MOCVD REBCO conductor. Results show that GdBCO/stainless-steel conductors retain their transport critical current for 10 000 cycles at ε = 0.35% and ε = 0.45%, and for 1000 cycles at ε = 0.50%. The main cause of fatigue degradation in GdBCO conductors is crack propagation and delamination that initiates at the edge of the conductor due to manufacturing defects.}, number={4}, journal={SUPERCONDUCTOR SCIENCE & TECHNOLOGY}, author={Rogers, Samuel and Schwartz, Justin}, year={2017}, month={Apr} } @article{rogers_chan_schwartz_2016, title={Effects of room-temperature tensile fatigue on critical current and n-value of IBAD-MOCVD YBa2Cu3O7-x/Hastelloy coated conductor}, volume={29}, ISSN={["1361-6668"]}, DOI={10.1088/0953-2048/29/8/085013}, abstractNote={REBa2Cu3O7−x (REBCO) coated conductors potentially enable a multitude of superconducting applications, over a wide range of operating temperatures and magnetic fields, including high-field magnets, energy storage devices, motors, generators, and power transmission systems (Zhang et al 2013 IEEE Trans. Appl. Supercond. 23 5700704). Many of these are AC applications and thus the fatigue properties may be limiting (Vincent et al 2013 IEEE Trans. Appl. Supercond. 23 5700805). Previous electromechanical studies have determined the performance of REBCO conductors under single cycle loads (Barth et al 2015 Supercond. Sci. Technol. 28 045011), but an understanding of the fatigue properties is lacking. Here the fatigue behavior of commercial ion beam assisted deposition–metal organic chemical vapor deposition REBCO conductors on Hastelloy substrates is reported for axial tensile strains up to 0.5% and up to 100 000 cycles. Failure mechanisms are investigated via microstructural studies. Results show that REBCO conductors retained Ic(ε)/Ic0 = 0.9 for 10 000 cycles at ε = 0.35% and ε = 0.45% strain, and ε = 0.5% for 100 cycles. The main cause of fatigue degradation in REBCO conductors is crack propagation that initiates at the slitting defects that result from the manufacturing process.}, number={8}, journal={SUPERCONDUCTOR SCIENCE & TECHNOLOGY}, author={Rogers, Samuel and Chan, Wan Kan and Schwartz, Justin}, year={2016}, month={Aug} } @article{ishmael_rogers_hunte_naderi_roach_straka_schwartz_2015, title={Current Density and Quench Behavior of MgB2/Ga Composite Wires}, volume={25}, ISSN={["1558-2515"]}, DOI={10.1109/tasc.2015.2483597}, abstractNote={Magnesium diboride (MgB 2) is a promising superconductor for many technical applications. Sufficient current densities at required magnetic fields, moderate operational temperature, low raw materials' cost, and an economical manufacturing process have enabled commercial development of MgB 2 wires. Reacted MgB 2, however, is brittle, and applications involving coils and windings with small bend radii are therefore difficult to implement. Furthermore, improvements in the critical current density are needed to expand the range of potential applications. Here, we report on the electrical behavior of novel MgB 2/Ga composite wires produced such that the proximity effect enhances connectivity, allowing the high-temperature anneal typically required for in situ and ex situ MgB 2 wires to be eliminated. Elimination of the high-temperature anneal simplifies MgB 2 manufacturing and has the potential to create a wire that is more tolerant of bending. Here, we present critical current density and quench propagation results for MgB 2/Ga composite wires sheathed in Cu.}, number={6}, journal={IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY}, author={Ishmael, Sasha A. and Rogers, Samuel and Hunte, Frank and Naderi, Golsa and Roach, Christian and Straka, Weston and Schwartz, Justin}, year={2015}, month={Dec} }