@article{wang_pirzada_xie_barbieri_hossain_opperman_pal_wei_parsons_khan_2022, title={Creating hierarchically porous banana paper-metal organic framework (MOF) composites with multifunctionality}, volume={28}, ISSN={["2352-9407"]}, url={https://doi.org/10.1016/j.apmt.2022.101517}, DOI={10.1016/j.apmt.2022.101517}, abstractNote={We report a robust approach to integrate metal-organic frameworks (MOF) via vapor phase synthesis on a cost-effective and mechanically durable fibrous banana paper (BP) substrate developed from lignocellulosic biomass. The unique hollow fibrous structure of BP combined with the methodology used produces MOF-fiber composites with uniform MOF distribution and enhanced functionalities, with minimal use of organic solvents. The BP-MOF composites demonstrate a high surface area of 552 m2/g and uniform surface growth of MOF on them. Mechanical strength and bending flexibility of the substrate is well retained after the MOF growth, while the hollow tubular nature and hierarchical porosity of the BP facilitate gas diffusion. The BP-MOF composites demonstrate strong antibacterial activity with 99.2% of E.coli destroyed within the first hour of incubation. Preliminary studies with smartphone-based volatile organic compound (VOC) sensor show enhanced 1-octen-3-ol vapor absorption on BP-MOF, indicating its potential for VOC capture and sensing. We believe that the sustainable nature and flexibility of the lignocellulosic BP substrate taken together with uniform growth of MOF on the hierarchically porous BP impart impressive attributes to these composites, which can be explored in diverse applications.}, journal={APPLIED MATERIALS TODAY}, publisher={Elsevier BV}, author={Wang, Siyao and Pirzada, Tahira and Xie, Wenyi and Barbieri, Eduardo and Hossain, Oindrila and Opperman, Charles H. and Pal, Lokendra and Wei, Qingshan and Parsons, Gregory N. and Khan, Saad A.}, year={2022}, month={Aug} } @article{rahmanian_pirzada_wang_khan_2021, title={Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality}, volume={33}, ISSN={["1521-4095"]}, url={https://doi.org/10.1002/adma.202102892}, DOI={10.1002/adma.202102892}, abstractNote={AbstractThe brittle nature of early aerogels developed from inorganic precursors fueled the discovery of their organic counterparts. Prominent among these organics are cellulose aerogels because of their natural abundance, biocompatibility, sustainable precursors, and tunable properties. The hierarchical structure of cellulose, from polymers to nano/microfibers, further facilitates fabrication of materials across multiple length scales with added applicability. However, the inherent flammability, structural fragility, and low thermal stability have limited their use. Recently developed cellulose‐based hybrid aerogels offer strong potential owing to their tunability and enhanced functionality brought about by combining the inherent properties of cellulose with organic and inorganic components. A survey of the historical background and scientific achievements in the design and development of cellulose‐based hybrid aerogel materials is encompassed here. The impacts of incorporating organic and inorganic ingredients with cellulose and the corresponding synergistic effects are discussed in terms of their design and functionality. The underlying principles governing the structural integration and functionality enhancement are also analyzed. The latest developments of cellulose‐based hybrid aerogels fabricated from nontraditional incipient aerogels, such as fibrous webs, are also explored. Finally, future opportunities that could make these materials achieve even greater impacts through improved scalability, rationally designed synthesis, and multifunctional properties are discussed.}, number={51}, journal={ADVANCED MATERIALS}, publisher={Wiley}, author={Rahmanian, Vahid and Pirzada, Tahira and Wang, Siyao and Khan, Saad A.}, year={2021}, month={Oct} } @article{nye_wang_uhlenbrock_smythe_parsons_2021, title={In situ analysis of growth rate evolution during molecular layer deposition of ultra-thin polyurea films using aliphatic and aromatic precursors}, volume={51}, ISSN={["1477-9234"]}, url={https://doi.org/10.1039/D1DT03689K}, DOI={10.1039/d1dt03689k}, abstractNote={MLD growth evolution depends on the deposition surface and monomer structure of the deposited film.}, number={5}, journal={DALTON TRANSACTIONS}, publisher={Royal Society of Chemistry (RSC)}, author={Nye, Rachel A. and Wang, Siyao and Uhlenbrock, Stefan and Smythe, John A., III and Parsons, Gregory N.}, year={2021}, month={Dec} } @article{smith_fabiani_wang_ramesh_khan_santiso_silva_gorman_menegatti_2020, title={Exploring the physicochemical and morphological properties of peptide‐hybridized dendrimers ( DendriPeps ) and their aggregates}, volume={58}, ISSN={2642-4150 2642-4169}, url={http://dx.doi.org/10.1002/pol.20200277}, DOI={10.1002/pol.20200277}, abstractNote={AbstractThis article presents an integrated experimental and computational study of DendriPeps, a novel class of dendrimers featuring a polyamidoamine (PAMAM) backbone hybridized with peptide segments. Hydroxyl‐terminated Generation 2 (G.2) DendriPeps, comprising either four lysines (Lys) or four glutamic acids (Glu), and G.3 DendriPeps, comprising 8 Lys or 8 Glu, were first characterized in terms of hydrodynamic radius (Rh) and ζ‐potential in aqueous solution. Unlike PAMAM dendrimers, DendriPeps form aggregates with Rh between 60 and 980 nm and ζ‐potential between −130 and 80 mV despite their strong net charge. Upon application of shear, all aggregates disassemble into monomeric DendriPeps (Rh ~ 1–3 nm), but reform rapidly as shear is removed. Rheological characterization confirmed that DendriPep aggregates are disrupted by mild shear, but reform reversibly. Molecular dynamics simulations, informed by titrimetry, suggest that DendriPep aggregation derives from their multipolar structure and ability to rearrange the intermolecular/intramolecular pairing of titratable moieties at different pH values.}, number={16}, journal={Journal of Polymer Science}, publisher={Wiley}, author={Smith, Ryan J. and Fabiani, Thomas and Wang, Siyao and Ramesh, Srivatsan and Khan, Saad and Santiso, Erik and Silva, Fernando Luis Barroso and Gorman, Christopher and Menegatti, Stefano}, year={2020}, month={Jul}, pages={2234–2247} }