@article{wang_kirste_mita_washiyama_mecouch_reddy_collazo_sitar_2022, title={

The role of Ga supersaturation on facet formation in the epitaxial lateral overgrowth of GaN

}, volume={120}, ISSN={["1077-3118"]}, DOI={10.1063/5.0077628}, abstractNote={In this paper, facet formation of (0001) {112¯0} {112¯2} facets during epitaxial lateral overgrowth (ELO) of GaN is investigated for different Ga vapor supersaturations. The ELO was conducted via metalorganic chemical vapor deposition on patterned GaN/sapphire templates with SiO2 masks aligned along the ⟨11¯00⟩ direction of GaN. Scanning electron microscopy was used to characterize the cross section shapes of the ELO GaN islands. A correlation of supersaturation, facet formation, and the shape of the ELO GaN islands is found. It is shown that {112¯2} facets are favored under high Ga vapor supersaturation, while {112¯0} facets are favored under low Ga vapor supersaturation. A qualitative model based on Wulff construction and density functional theory calculation is proposed to illustrate the mechanism of the facet formation of the ELO GaN islands.}, number={3}, journal={APPLIED PHYSICS LETTERS}, author={Wang, Ke and Kirste, Ronny and Mita, Seiji and Washiyama, Shun and Mecouch, Will and Reddy, Pramod and Collazo, Ramon and Sitar, Zlatko}, year={2022}, month={Jan} } @article{bagheri_klump_washiyama_breckenridge_kim_guan_khachariya_quinones-garcia_sarkar_rathkanthiwar_et al._2022, title={Doping and compensation in heavily Mg doped Al-rich AlGaN films}, volume={120}, ISSN={["1077-3118"]}, DOI={10.1063/5.0082992}, abstractNote={Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3 were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019 cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.}, number={8}, journal={APPLIED PHYSICS LETTERS}, author={Bagheri, Pegah and Klump, Andrew and Washiyama, Shun and Breckenridge, M. Hayden and Kim, Ji Hyun and Guan, Yan and Khachariya, Dolar and Quinones-Garcia, Cristyan and Sarkar, Biplab and Rathkanthiwar, Shashwat and et al.}, year={2022}, month={Feb} } @article{szymanski_khachariya_eldred_bagheri_washiyama_chang_pavlidis_kirste_reddy_kohn_et al._2022, title={GaN lateral polar junction arrays with 3D control of doping by supersaturation modulated growth: A path toward III-nitride superjunctions}, volume={131}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0076044}, DOI={10.1063/5.0076044}, abstractNote={We demonstrate a pathway employing crystal polarity controlled asymmetric impurity incorporation in the wide bandgap nitride material system to enable 3D doping control during the crystal growth process. The pathway involves polarity specific supersaturation modulated growth of lateral polar structures of alternating Ga- and N-polar GaN domains. A STEM technique of integrated differential phase contrast is used to image the atomic structure of the different polar domains and their single atomic plane boundaries. As a demonstration, 1 μm wide alternating Ga- and N-polar GaN domains exhibiting charge balanced and periodic domains for superjunction technology were grown. The challenges in characterizing the resulting 3D doping profile were addressed with atom probe tomography with atomic scale compositional resolution corroborating capacitance measurements and secondary-ion mass spectroscopy analysis.}, number={1}, journal={JOURNAL OF APPLIED PHYSICS}, author={Szymanski, Dennis and Khachariya, Dolar and Eldred, Tim B. and Bagheri, Pegah and Washiyama, Shun and Chang, Alexander and Pavlidis, Spyridon and Kirste, Ronny and Reddy, Pramod and Kohn, Erhard and et al.}, year={2022}, month={Jan} } @article{bagheri_kim_washiyama_reddy_klump_kirste_mita_collazo_sitar_2021, title={A pathway to highly conducting Ge-doped AlGaN}, volume={130}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/5.0071791}, DOI={10.1063/5.0071791}, abstractNote={Ge doping in AlGaN was studied over a wide dopant concentration range. For high Ge concentrations, the formation of VIII–nGeIII was determined to be the main point defect limiting the conductivity. It was shown that the complex formation could be suppressed by controlling chemical potentials during growth, leading to a higher maximum achievable carrier concentration and selective stabilization of a certain complex type. Chemical potential of the growth species was varied by changing the V/III ratio and growth temperature. Free carrier concentrations as high as 4 × 1019 cm−3 were achieved in Al0.4Ga0.6N:Ge grown on sapphire substrates under “metal-rich” conditions. The ability to control the onset of self-compensation and to stabilize a certain charge state of the compensating defect is of great technological importance for application of AlGaN in various devices.}, number={20}, journal={JOURNAL OF APPLIED PHYSICS}, author={Bagheri, Pegah and Kim, Ji Hyun and Washiyama, Shun and Reddy, Pramod and Klump, Andrew and Kirste, Ronny and Mita, Seiji and Collazo, Ramon and Sitar, Zlatko}, year={2021}, month={Nov} } @article{cancellara_markurt_schulz_albrecht_hagedorn_walde_weyers_washiyama_collazo_sitar_2021, title={Role of oxygen diffusion in the dislocation reduction of epitaxial AlN on sapphire during high-temperature annealing}, volume={130}, ISSN={["1089-7550"]}, DOI={10.1063/5.0065935}, abstractNote={Recovery of epitaxial AlN films on sapphire at high temperatures is now an established process to produce pseudo-substrates with high crystalline perfection, which can be used to grow epitaxial structures for UV-light-emitting devices. To elucidate the elementary mechanisms taking place during the thermal treatment of MOVPE-grown films, we studied as-grown and annealed samples combining transmission electron microscopy techniques and secondary ion mass spectrometry (SIMS). By using SIMS, we find a temperature-dependent increase in the overall oxygen content of the films, which cannot be explained quantitatively with either simple bulk or pure pipe-diffusion from the sapphire substrate. Instead, we propose a lateral outdiffusion from the dislocation cores to explain qualitatively and quantitatively the presence of observed oxygen concentration plateaus. Based on the formation enthalpy of various atomic defects and complexes found in literature, we conclude that the di-oxygen/aluminum vacancy complex (VAl–2ON) is the dominant point defect controlling the annealing process. The formation of this defect at high temperatures promotes a dislocation core climb process, which causes the annihilation/fusion of the threading dislocation segments.}, number={20}, journal={JOURNAL OF APPLIED PHYSICS}, author={Cancellara, Leonardo and Markurt, Toni and Schulz, Tobias and Albrecht, Martin and Hagedorn, Sylvia and Walde, Sebastian and Weyers, Markus and Washiyama, Shun and Collazo, Ramon and Sitar, Zlatko}, year={2021}, month={Nov} } @article{washiyama_mirrielees_bagheri_baker_kim_guo_kirste_guan_breckenridge_klump_et al._2021, title={Self-compensation in heavily Ge doped AlGaN: A comparison to Si doping}, volume={118}, ISSN={["1077-3118"]}, DOI={10.1063/5.0035957}, abstractNote={Self-compensation in Ge- and Si-doped Al0.3Ga0.7N has been investigated in terms of the formation of III vacancy and donor-vacancy complexes. Both Ge- and Si-doped AlGaN layers showed a compensation knee behavior with impurity compensation (low doping regime), compensation plateau (medium doping regime), and self-compensation (high doping regime). A maximum free carrier concentration of 4–5 × 1019 cm−3 was obtained by Ge doping, whereas Si doping resulted in only half of that value, ∼2 × 1019 cm−3. A DFT calculation with the grand canonical thermodynamics model was developed to support the hypothesis that the difference in self-compensation arises from the difference in the formation energies of the VIII-n•donor complexes relative to their onsite configurations. The model suggested that the VIII-2•donor and VIII-3•donor complexes were responsible for self-compensation for both Ge- and Si-doped AlGaN. However, a lower free carrier concentration in Si-doped samples was due to a high VIII-3•Si concentration, resulting from a lower energy of formation of VIII-3•Si.}, number={4}, journal={APPLIED PHYSICS LETTERS}, author={Washiyama, Shun and Mirrielees, Kelsey J. and Bagheri, Pegah and Baker, Jonathon N. and Kim, Ji-Hyun and Guo, Qiang and Kirste, Ronny and Guan, Yan and Breckenridge, M. Hayden and Klump, Andrew J. and et al.}, year={2021}, month={Jan} } @article{kim_bagheri_washiyama_klump_kirste_mita_reddy_collazo_sitar_2021, title={Temperature dependence of electronic bands in Al/GaN by utilization of invariant deep defect transition energies}, volume={119}, ISSN={["1077-3118"]}, DOI={10.1063/5.0055409}, abstractNote={We show experimentally that deep point defect levels in GaN, AlN, and AlGaN are constant with respect to the vacuum level and can be used as invariant internal energy references. This offered a convenient and quick way to assess band shifts and impurity levels as a function of temperature via photoluminescence. For AlGaN, we determined that the band shift in the temperature range of 3–600 K occurred primarily in the valence band and that the lowering of the conduction band edge was comparatively small. The valence band shift (as a fraction of the Varshni bandgap shift) in AlGaN varies from ∼70% in AlN to ∼90% in GaN.}, number={2}, journal={APPLIED PHYSICS LETTERS}, author={Kim, Ji Hyun and Bagheri, Pegah and Washiyama, Shun and Klump, Andrew and Kirste, Ronny and Mita, Seiji and Reddy, Pramod and Collazo, Ramon and Sitar, Zlatko}, year={2021}, month={Jul} } @article{washiyama_guan_mita_collazo_sitar_2020, title={Recovery kinetics in high temperature annealed AlN heteroepitaxial films}, volume={127}, ISSN={["1089-7550"]}, DOI={10.1063/5.0002891}, abstractNote={Based on the experimental dislocation annihilation rates, vacancy core diffusion-controlled dislocation climb was found as a dominant recovery mechanism in high temperature annealing of AlN heteroepitaxial films. Dislocation annihilation mechanisms via dislocation glide (with or without kinks) and vacancy bulk diffusion were found to be less significant. Cross-slip was also ruled out as a possible mechanism as a majority of dislocations in heteroepitaxial AlN films are threading edge dislocations. While dislocation climb through both vacancy bulk and core diffusion could offer a plausible explanation of the recovery process, the activation energy for the vacancy core diffusion-controlled dislocation climb was relatively low (4.3 ± 0.1 eV), as estimated from an Arrhenius plot. The validity of the vacancy core diffusion mechanism was also supported by a large vacancy mean free path (∼240 nm), which was comparable to the sample thickness and thus the average dislocation length. Finally, the experimentally observed dislocation density reduction as a function of the annealing temperature and time was in good agreement with the vacancy core diffusion mechanism.}, number={11}, journal={JOURNAL OF APPLIED PHYSICS}, author={Washiyama, Shun and Guan, Yan and Mita, Seiji and Collazo, Ramon and Sitar, Zlatko}, year={2020}, month={Mar} } @article{guo_kirste_mita_tweedie_reddy_washiyama_breckenridge_collazo_sitar_2019, title={The polarization field in Al-rich AlGaN multiple quantum wells}, volume={58}, ISSN={["1347-4065"]}, DOI={10.7567/1347-4065/ab07a9}, abstractNote={Abstract}, journal={JAPANESE JOURNAL OF APPLIED PHYSICS}, author={Guo, Qiang and Kirste, Ronny and Mita, Seiji and Tweedie, James and Reddy, Pramod and Washiyama, Shun and Breckenridge, M. Hayden and Collazo, Ramon and Sitar, Zlatko}, year={2019}, month={Jun} } @article{dycus_washiyama_eldred_guan_kirste_mita_sitar_collazo_lebeau_2019, title={The role of transient surface morphology on composition control in AlGaN layers and wells}, volume={114}, ISSN={["1077-3118"]}, DOI={10.1063/1.5063933}, abstractNote={The mechanisms governing “compositional pulling” during the growth of AlxGa1−xN wells are investigated. Gallium-rich AlxGa1−xN wells grown on high dislocation density AlN/sapphire templates exhibit asymmetric and diffuse composition profiles, while those grown on low dislocation density native AlN substrates do not. Furthermore, strain in all AlxGa1−xN wells is found to be pseudomorphic, ruling it out as the dominating driving force. Rather, the high threading dislocation density of the AlN template is considered to play the defining role. We propose that a transient surface morphology is introduced during dislocation mediated spiral growth, which, in conjunction with process supersaturation, determines the Ga incorporation. These findings provide insights into compositional pulling in high Ga content AlxGa1−xN grown on AlN and provide a route to grow thicker wells with very abrupt interfaces on native AlN substrates.}, number={3}, journal={APPLIED PHYSICS LETTERS}, author={Dycus, J. Houston and Washiyama, Shun and Eldred, Tim B. and Guan, Yan and Kirste, Ronny and Mita, Seiji and Sitar, Zlatko and Collazo, Ramon and LeBeau, James M.}, year={2019}, month={Jan} } @article{washiyama_reddy_kaess_kirste_mita_collazo_sitar_2018, title={A thermodynamic supersaturation model for the growth of aluminum gallium nitride by metalorganic chemical vapor deposition}, volume={124}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/1.5045058}, DOI={10.1063/1.5045058}, abstractNote={A thermodynamic supersaturation model for growth of AlGaN by metalorganic chemical vapor deposition was developed for experimentally accessible growth parameters. The derived non-linear relationships enabled us to estimate Ga and Al supersaturation during AlGaN growth for given growth conditions. Calculations revealed that the GaN phase was close to chemical equilibrium, while the Al supersaturation was as high as 1010 for typical growth conditions. Such a disparity in the supersaturation of reaction species plays a significant role in the stability of the growth of the resulting ternary alloy. The agreement between experiment and simulation suggests that the parasitic gas phase reactions between trimethylaluminum and NH3 were not significant at low NH3 flow rates/partial pressures, indicating that, under these conditions, the AlGaN growth was thermodynamically limited.}, number={11}, journal={JOURNAL OF APPLIED PHYSICS}, author={Washiyama, Shun and Reddy, Pramod and Kaess, Felix and Kirste, Ronny and Mita, Seiji and Collazo, Ramon and Sitar, Zlatko}, year={2018}, month={Sep} } @article{bryan_bryan_washiyama_reddy_gaddy_sarkar_breckenridge_guo_bobea_tweedie_et al._2018, title={Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD}, volume={112}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/1.5011984}, DOI={10.1063/1.5011984}, abstractNote={In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.}, number={6}, journal={APPLIED PHYSICS LETTERS}, publisher={AIP Publishing}, author={Bryan, Isaac and Bryan, Zachary and Washiyama, Shun and Reddy, Pramod and Gaddy, Benjamin and Sarkar, Biplab and Breckenridge, M. Hayden and Guo, Qiang and Bobea, Milena and Tweedie, James and et al.}, year={2018}, month={Feb} } @article{reddy_washiyama_mecouch_hernandez-balderrama_kaess_breckenridge_sarkar_haidet_franke_kohn_et al._2018, title={Plasma enhanced chemical vapor deposition of SiO2 and SiNx on AlGaN: Band offsets and interface studies as a function of Al composition}, volume={36}, ISSN={["1520-8559"]}, DOI={10.1116/1.5050501}, abstractNote={In this work, the authors characterized the interface of plasma enhanced chemical vapor deposition (PECVD) dielectrics, SiO2 and SiNx with AlGaN as a function of Al composition. SiO2 is found to exhibit type I straddled band alignment with positive conduction and valence band offsets for all Al compositions. However, the interface Fermi level is found to be pinned within the bandgap, indicating a significant density of interface states. Hence, SiO2 is found to be suitable for insulating layers or electrical isolation on AlGaN with breakdown fields between 4.5 and 6.5 MV cm−1, but an additional passivating interlayer between SiO2 and AlGaN is necessary for passivation on Al-rich AlGaN. In contrast, Si-rich PECVD SiNx is found to exhibit type II staggered band alignment with positive conduction band offsets and negative valence band offsets for Al compositions <40% and type I straddled band alignment with negative conduction and valence band offsets for Al compositions >40% and is, hence, found to be unsuitable for insulating layers or electrical isolation on Al-rich AlGaN in general. In contrast to passivating stoichiometric LPCVD Si3N4, no evidence for interface state reduction by depositing SiNx on AlGaN is observed.}, number={6}, journal={JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A}, author={Reddy, Pramod and Washiyama, Shun and Mecouch, Will and Hernandez-Balderrama, Luis H. and Kaess, Felix and Breckenridge, M. Hayden and Sarkar, Biplab and Haidet, Brian B. and Franke, Alexander and Kohn, Erhard and et al.}, year={2018}, month={Nov} } @article{reddy_washiyama_kaess_kirste_mita_collazo_sitar_2017, title={Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN}, volume={122}, url={https://doi.org/10.1063/1.5002682}, DOI={10.1063/1.5002682}, abstractNote={A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in predicting defect incorporation in non-equilibrium and high temperature MOCVD growth is confirmed. Furthermore, the proposed theoretical framework may be used to determine optimal growth conditions to achieve minimum compensation within any given constraints such as growth rate, crystal quality, and other practical system limitations.}, number={24}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Reddy, Pramod and Washiyama, Shun and Kaess, Felix and Kirste, Ronny and Mita, Seiji and Collazo, Ramon and Sitar, Zlatko}, year={2017}, month={Dec}, pages={245702} } @article{kaess_mita_xie_reddy_klump_hernandez-balderrama_washiyama_franke_kirste_hoffmann_et al._2016, title={Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition}, volume={120}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/1.4962017}, DOI={10.1063/1.4962017}, abstractNote={In the low doping range below 1 × 1017 cm−3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm−3 to values as low as 2 × 1015 cm−3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm−3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm−3 with a peak electron mobility of 820 cm2/V s without observing the mobility collapse. The highest electron mobility of 1170 cm2/V s was obtained even in metalorganic vapor deposition-grown GaN on sapphire substrates by optimizing growth parameters in terms of Ga supersaturation to reduce the C concentration.}, number={10}, journal={JOURNAL OF APPLIED PHYSICS}, publisher={AIP Publishing}, author={Kaess, Felix and Mita, Seiji and Xie, Jingqiao and Reddy, Pramod and Klump, Andrew and Hernandez-Balderrama, Luis H. and Washiyama, Shun and Franke, Alexander and Kirste, Ronny and Hoffmann, Axel and et al.}, year={2016}, month={Sep} } @article{reddy_washiyama_kaess_breckenridge_hernandez-balderrama_haidet_alden_franke_sarkar_kohn_et al._2016, title={High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies}, volume={119}, ISSN={["1089-7550"]}, url={https://doi.org/10.1063/1.4945775}, DOI={10.1063/1.4945775}, abstractNote={In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on AlxGa1-xN (of varying Al composition “x”) via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where Eg(AlGaN) > Eg(Si3N4). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ∼1 eV in comparison to that at free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si0/−1) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si3N4/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si3N4/n-GaN to the valence band in Si3N4/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.}, number={14}, journal={JOURNAL OF APPLIED PHYSICS}, publisher={AIP Publishing}, author={Reddy, Pramod and Washiyama, Shun and Kaess, Felix and Breckenridge, M. Hayden and Hernandez-Balderrama, Luis H. and Haidet, Brian B. and Alden, Dorian and Franke, Alexander and Sarkar, Biplab and Kohn, Erhard and et al.}, year={2016}, month={Apr} } @article{franke_hoffmann_hernandez-balderrama_kaess_bryan_washiyama_bobea_tweedie_kirste_gerhold_et al._2016, title={Strain engineered high reflectivity DBRs in the deep UV}, volume={9748}, ISSN={["1996-756X"]}, DOI={10.1117/12.2211700}, abstractNote={The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.}, journal={GALLIUM NITRIDE MATERIALS AND DEVICES XI}, author={Franke, A. and Hoffmann, P. and Hernandez-Balderrama, L. and Kaess, F. and Bryan, I. and Washiyama, S. and Bobea, M. and Tweedie, J. and Kirste, R. and Gerhold, M. and et al.}, year={2016} } @article{reddy_bryan_bryan_tweedie_washiyama_kirste_mita_collazo_sitar_2015, title={Charge neutrality levels, barrier heights, and band offsets at polar AlGaN}, volume={107}, ISSN={["1077-3118"]}, url={https://doi.org/10.1063/1.4930026}, DOI={10.1063/1.4930026}, abstractNote={In this work, the Fermi level and band alignment at c-plane surfaces and interfaces of AlGaN thin films grown on sapphire and native single crystalline AlN substrates were analyzed via x-ray photoelectron spectroscopy. The dependence of charge neutrality level (CNL) on Al composition is found to be linear with n-type Schottky barrier heights (Φbn) exhibiting an overall quadratic behavior due to bandgap bowing. A general theoretical expression for Schottky barrier height on AlGaN is determined as a function of Al composition and metal electronegativity utilizing the interface induced gap states (IFIGS) model and is corroborated with current-voltage (I-V) characterization on Ni-based Schottky diodes. The measured CNLs were used to determine the conduction and valence band offsets in AlGaN hetero-junctions according to the IFIGS and were found to be split approximately 2/3 and 1/3 of the bandgap, respectively, at interfaces with AlGaN having comparable Al and Ga concentrations. Nonlinearities in Φbn result in an increase (>2/3) and decrease (<2/3) of the conduction band split at AlN/AlGaN and GaN/AlGaN interfaces, respectively. Characterization of core level binding energies revealed a composition-independent surface work function. Consequently, electron affinity is found to be a linear function of the barrier height at the CNL and band offsets determined via IFIGS and Anderson's rule were found to be identical. The origin of the bandgap bowing arising in the conduction band is proposed.}, number={9}, journal={APPLIED PHYSICS LETTERS}, publisher={AIP Publishing}, author={Reddy, Pramod and Bryan, Isaac and Bryan, Zachary and Tweedie, James and Washiyama, Shun and Kirste, Ronny and Mita, Seiji and Collazo, Ramon and Sitar, Zlatko}, year={2015}, month={Aug} }