Tarek Echekki Alqahtani, S., Gitushi, K. M., & Echekki, T. (2024). A Data-Based Hybrid Chemistry Acceleration Framework for the Low-Temperature Oxidation of Complex Fuels. ENERGIES, 17(3). https://doi.org/10.3390/en17030734 Kumar, A., & Echekki, T. (2024). Combustion chemistry acceleration with DeepONets. FUEL, 365. https://doi.org/10.1016/j.fuel.2024.131212 Jung, K. S., Kumar, A., Echekki, T., & Chen, J. H. (2024, February). On the application of principal component transport for compression ignition of lean fuel/air mixtures under engine relevant conditions. COMBUSTION AND FLAME, Vol. 260. https://doi.org/10.1016/j.combustflame.2023.113204 Kumar, A., Rieth, M., Owoyele, O., Chen, J. H., & Echekki, T. (2023). Acceleration of turbulent combustion DNS via principal component transport. COMBUSTION AND FLAME, 255. https://doi.org/10.1016/j.combustflame.2023.112903 Ranade, R., Gitushi, K. M., & Echekki, T. (2023, November 25). Deep Learning of Joint Scalar PDFs in Turbulent Flames from Sparse Multiscalar Data. COMBUSTION SCIENCE AND TECHNOLOGY, Vol. 11. https://doi.org/10.1080/00102202.2023.2283816 Taassob, A., & Echekki, T. (2023). Derived scalar statistics from multiscalar measurements via surrogate composition spaces. COMBUSTION AND FLAME, 250. https://doi.org/10.1016/j.combustflame.2023.112641 Vervisch, L., & Echekki, T. (2023, December). ML for reacting flows _ editorial. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, Vol. 16. https://doi.org/10.1016/j.jaecs.2023.100208 Taassob, A., Ranade, R., & Echekki, T. (2023, October 31). Physics-Informed Neural Networks for Turbulent Combustion: Toward Extracting More Statistics and Closure from Point Multiscalar Measurements. ENERGY & FUELS, Vol. 10. https://doi.org/10.1021/acs.energyfuels.3c02410 Mami, M. A., Lajili, M., & Echekki, T. (2022). CFD multiphase combustion modelling of oleic by-products pellets in a counter-current fixed bed combustor. COMPTES RENDUS CHIMIE, 25, 113–127. https://doi.org/10.5802/crchim.170 Gitushi, K. M., Ranade, R., & Echekki, T. (2022). Investigation of deep learning methods for efficient high-fidelity simulations in turbulent combustion. COMBUSTION AND FLAME, 236. https://doi.org/10.1016/j.combustflame.2021.111814 Malik, M. R., Coussement, A., Echekki, T., & Parente, A. (2022). Principal component analysis based combustion model in the context of a lifted methane/air flame: Sensitivity to the manifold parameters and subgrid closure. COMBUSTION AND FLAME, 244. https://doi.org/10.1016/j.combustflame.2022.112134 Alqahtani, S., & Echekki, T. (2021). A data-based hybrid model for complex fuel chemistry acceleration at high temperatures. COMBUSTION AND FLAME, 223, 142–152. https://doi.org/10.1016/j.combustflame.2020.09.022 Ashok, S. G., & Echekki, T. (2021). A numerical study of backdraft phenomena under normal and reduced gravity. FIRE SAFETY JOURNAL, 121. https://doi.org/10.1016/j.firesaf.2020.103270 Ranade, R., Li, G., Li, S., & Echekki, T. (2021). An Efficient Machine-Learning Approach for PDF Tabulation in Turbulent Combustion Closure. Combustion Science and Technology, 193(7), 1258–1277. https://doi.org/10.1080/00102202.2019.1686702 Ranade, R., Echekki, T., & Masri, A. R. (2021, November 16). Experiment-Based Modeling of Turbulent Flames with Inhomogeneous Inlets. FLOW TURBULENCE AND COMBUSTION, Vol. 11. https://doi.org/10.1007/s10494-021-00304-8 Sun, W., Zhong, W., Zhang, J., & Echekki, T. (2021). Large Eddy Simulation on the Effects of Coal Particles Size on Turbulent Combustion Characteristics and NOx Formation Inside a Corner-Fired Furnace. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 143(8). https://doi.org/10.1115/1.4048864 Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames. (2020). International Journal of Engine Research. https://doi.org/10.1177/1468087419837770 Echekki, T. (2020). In the rain with and without an umbrella? The Reynolds transport theorem to the rescue. EUROPEAN JOURNAL OF PHYSICS, 41(1). https://doi.org/10.1088/1361-6404/ab4b62 Ranade, R., & Echekki, T. (2019). A framework for data-based turbulent combustion closure: A posteriori validation. Combustion and Flame, 210, 279–291. https://doi.org/10.1016/j.combustflame.2019.08.039 Ranade, R., & Echekki, T. (2019). A framework for data-based turbulent combustion closure: A priori validation. Combustion and Flame, 206, 490–505. https://doi.org/10.1016/j.combustflame.2019.05.028 Ranade, R., Alqahtani, S., Farooq, A., & Echekki, T. (2019). An ANN based hybrid chemistry framework for complex fuels. FUEL, 241, 625–636. https://doi.org/10.1016/j.fuel.2018.12.082 Ranade, R., Alqahtani, S., Farooq, A., & Echekki, T. (2019). An extended hybrid chemistry framework for complex hydrocarbon fuels. FUEL, 251, 276–284. https://doi.org/10.1016/j.fuel.2019.04.053 Sun, W., Zhong, W., & Echekki, T. (2019, October). Large eddy simulation of non-premixed pulverized coal combustion in corner-fired furnace for various excess air ratios. APPLIED MATHEMATICAL MODELLING, Vol. 74, pp. 694–707. https://doi.org/10.1016/j.apm.2019.05.017 Sun, W., Zhong, W., & Echekki, T. (2019). Large eddy simulation of the interactions between gas and particles in a turbulent corner-injected flow. ADVANCED POWDER TECHNOLOGY, 30(10), 2139–2149. https://doi.org/10.1016/j.apt.2019.06.029 Miles, J. S., & Echekki, T. (2018). A One-Dimensional Turbulence-Based Closure Model for Combustion LES. Combustion Science and Technology, 192(1), 78–111. https://doi.org/10.1080/00102202.2018.1556262 Hoffie, A. F., & Echekki, T. (2018). A coupled LES-ODT model for spatially-developing turbulent reacting shear layers. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 127, 458–473. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.105 Fu, Y., & Echekki, T. (2018). UPSCALING AND DOWNSCALING APPROACHES IN LES-ODT FOR TURBULENT COMBUSTION FLOWS. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 16(1), 45–76. https://doi.org/10.1615/intjmultcompeng.2018021350 Kundu, P., Echekki, T., Pei, Y., & Som, S. (2017). An equivalent dissipation rate model for capturing history effects in non-premixed flames. COMBUSTION AND FLAME, 176, 202–212. https://doi.org/10.1016/j.combustflame.2016.10.001 Srivastava, S., & Echekki, T. (2017). PARTICLE-FILTER BASED UPSCALING FOR TURBULENT REACTING FLOW SIMULATIONS. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 15(1), 1–17. https://doi.org/10.1615/intjmultcompeng.2017017084 Ben Rejeb, S., & Echekki, T. (2017). Thermal radiation modeling using the LES-ODT framework for turbulent combustion flows. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 104, 1300–1316. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.074 Owoyele, O., & Echekki, T. (2017). Toward computationally efficient combustion DNS with complex fuels via principal component transport. COMBUSTION THEORY AND MODELLING, 21(4), 770–798. https://doi.org/10.1080/13647830.2017.1296976 Echekki, T., & Ahmed, S. F. (2017). Turbulence effects on the autoignition of DME in a turbulent co-flowing jet. COMBUSTION AND FLAME, 178, 70–81. https://doi.org/10.1016/j.combustflame.2016.12.022 Echekki, T. (2016). Asymptotic analysis of steady two-reactant premixed flames using a step-function reaction rate model. COMBUSTION AND FLAME, 172, 280–288. https://doi.org/10.1016/j.combustflame.2016.07.027 Edwards, J. R., Luo, L., Patton, C. H., Wignall, T. J., & Echekki, T. (2016). Improved 4D data assimilation for large eddy simulation of high speed turbulent combustion. 46th AIAA Fluid Dynamics Conference. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84980367676&partnerID=MN8TOARS Patton, C. H., Wignall, T. J., Edwards, J. R., & Echekki, T. (2016). LES model assessment for high speed combustion. 54th AIAA Aerospace Sciences Meeting. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85007417906&partnerID=MN8TOARS Wignall, T. J., Patton, C. H., Echekki, T., & Edwards, J. R. (2016). Predicting and accelerating chemistry in high speed reacting flows. 54th AIAA Aerospace Sciences Meeting. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-85007578694&partnerID=MN8TOARS Edwards, J. R., Patton, C. H., Mirgolbabaei, H., Wignall, T. J., & Echekki, T. (2015). 4D data assimilation for large Eddy simulation of high speed turbulent combustion. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84946088745&partnerID=MN8TOARS Echekki, T., & Ahmed, S. E. (2015). Autoignition of n-heptane in a turbulent co-flowing jet. COMBUSTION AND FLAME, 162(10), 3829–3846. https://doi.org/10.1016/j.combustflame.2015.07.020 Patton, C. H., Wignall, T. J., Edwards, J. R., & Echekki, T. (2015). LES model assessment for high speed combustion using mesh-sequenced realizations. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84946044335&partnerID=MN8TOARS Liu, Y., & Echekki, T. (2015). Modelling of combustion noise spectrum using temporal correlations of heat release rate from turbulent premixed flames. 21st AIAA/CEAS Aeroacoustics Conference. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84962498061&partnerID=MN8TOARS Echekki, T., & Mirgolbabaei, H. (2015). Principal component transport in turbulent combustion: A posteriori analysis. COMBUSTION AND FLAME, 162(5), 1919–1933. https://doi.org/10.1016/j.combustflame.2014.12.011 Mirgolbabaei, H., & Echekki, T. (2015). The reconstruction of thermo-chemical scalars in combustion from a reduced set of their principal components. COMBUSTION AND FLAME, 162(5), 1650–1652. https://doi.org/10.1016/j.combustflame.2014.11.027 Mirgolbabaei, H., Echekki, T., & Smaoui, N. (2014). A nonlinear principal component analysis approach for turbulent combustion composition space. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 39(9), 4622–4633. https://doi.org/10.1016/j.ijhydene.2013.12.195 Mirgolbabaei, H., & Echekki, T. (2014). Nonlinear reduction of combustion composition space with kernel principal component analysis. COMBUSTION AND FLAME, 161(1), 118–126. https://doi.org/10.1016/j.combustflame.2013.08.016 Srivastava, S., & Echekki, T. (2013). A novel Kalman filter based approach for multiscale reacting flow simulations. COMPUTERS & FLUIDS, 81, 1–9. https://doi.org/10.1016/j.compfluid.2013.04.008 Mirgolbabaei, H., & Echekki, T. (2013). A novel principal component analysis-based acceleration scheme for LES-ODT: An a priori study. COMBUSTION AND FLAME, 160(5), 898–908. https://doi.org/10.1016/j.combustflame.2013.01.007 Mirgolbabaei, H., & Echekki, T. (2013). A novel principal component analysis-based acceleration scheme for LES-ODT: An a priori study. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84881421712&partnerID=MN8TOARS Daly, A., Zannetti, P., & Echekki, T. (2012). A combination of fire and dispersion modeling techniques for simulating a warehouse fire. International Journal of Safety and Security Engineering, 2(4), 368–380. https://doi.org/10.2495/SAFE-V2-N4-368-380 Sedhai, S., & Echekki, T. (2012). An ODT-based flame embedding approach for turbulent non-premixed combustion. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2012-181 Shekhawat, Y., & Echekki, T. (2012). An ODT-based multiscale radiative transport model in participating (absorbing-emitting) gray media. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2012-210 Gowda, B. D., & Echekki, T. (2012). Complex injection strategies for hydrogen-fueled HCCI engines. FUEL, 97, 418–427. https://doi.org/10.1016/j.fuel.2012.01.060 Park, J., & Echekki, T. (2012). LES-ODT study of turbulent premixed interacting flames. COMBUSTION AND FLAME, 159(2), 609–620. https://doi.org/10.1016/j.combustflame.2011.08.002 Gowda, B. D., & Echekki, T. (2012). One-dimensional turbulence simulations of hydrogen-fueled HCCI combustion. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 37(9), 7912–7924. https://doi.org/10.1016/j.ijhydene.2012.02.020 Wang, W., & Echekki, T. (2011). Investigation of lifted jet flames stabilization mechanism using RANS simulations. FIRE SAFETY JOURNAL, 46(5), 254–261. https://doi.org/10.1016/j.firesaf.2011.02.007 Gupta, K. G., & Echekki, T. (2011). One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet. COMBUSTION AND FLAME, 158(2), 327–344. https://doi.org/10.1016/j.combustflame.2010.09.003 Echekki, T. (2011). The emerging role of multiscale methods in turbulent combustion. In Fluid Mechanics and its Applications (Vol. 95, pp. 177–192). https://doi.org/10.1007/978-94-007-0412-1_8 Echekki, T., Kerstein, A. R., & Sutherland, J. C. (2011). The one-dimensional-turbulence model. In Fluid Mechanics and its Applications (Vol. 95, pp. 249–276). https://doi.org/10.1007/978-94-007-0412-1_11 Echekki, T., & Mastorakos, E. (2011). Turbulent combustion: Concepts, governing equations and modeling strategies. In Fluid Mechanics and its Applications (Vol. 95, pp. 19–39). https://doi.org/10.1007/978-94-007-0412-1_2 Echekki, T., & Park, J. (2010). The LES-ODT model for turbulent premixed flames. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-78649864613&partnerID=MN8TOARS Vasudeo, N., Echekki, T., Day, M. S., & Bell, J. B. (2010). The regime diagram for premixed flame kernel-vortex interactions-Revisited. PHYSICS OF FLUIDS, 22(4). https://doi.org/10.1063/1.3372167 Echekki, T. (Ed.). (2010). Turbulent combustion modeling: Advances, new trends and perspectives. Berlin: Springer Verlag. Echekki, T., & Gupta, K. G. (2009). Hydrogen autoignition in a turbulent jet with preheated co-flow air. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 34(19), 8352–8377. https://doi.org/10.1016/j.ijhydene.2009.06.085 Echekki, T. (2009). Multiscale methods in turbulent combustion: Strategies and computational challenges. Computational Science & Discovery, 3, 013001. https://doi.org/10.1088/1749-4699/2/1/013001 Ranganath, B., & Echekki, T. (2009). ODT Closure with Extinction and Reignition in Piloted Methane-Air Jet Diffusion Flames. COMBUSTION SCIENCE AND TECHNOLOGY, 181(4), 570–596. https://doi.org/10.1080/00102200802529993 Cao, S., & Echekki, T. (2008). A low-dimensional stochastic closure model for combustion large-eddy simulation. JOURNAL OF TURBULENCE, 9(2), 1–35. https://doi.org/10.1080/14685240701790714 Ranganath, B., & Echekki, T. (2008). One-dimensional turbulence-based closure with extinction and reignition. COMBUSTION AND FLAME, 154(1-2), 23–46. https://doi.org/10.1016/j.combustflame.2008.03.020 Echekki, T. (2008). Stochastic modeling of autoignition in turbulent non-homogeneous hydrogen-air mixtures. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 33(10), 2596–2603. https://doi.org/10.1016/j.ijhydene.2008.03.030 Zhang, S., & Echekki, T. (2008). Stochastic modeling of finite-rate chemistry effects in hydrogen-air turbulent jet diffusion flames with helium dilution. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 33(23), 7295–7306. https://doi.org/10.1016/j.ijhydene.2008.09.018 Echekki, T., & Kolera-Gokula, H. (2007). A regime diagram for premixed flame kernel-vortex interactions. PHYSICS OF FLUIDS, 19(4). https://doi.org/10.1063/1.2720595 Cao, S., & Echekki, T. (2007). Autoignition in nonhomogeneous mixtures: Conditional statistics and implications for modeling. COMBUSTION AND FLAME, 151(1-2), 120–141. https://doi.org/10.1016/j.combustflame.2007.03.008 Kolera-Gokula, H., & Echekki, T. (2007). The mechanism of unsteady downstream interactions of premixed hydrogen-air flames. COMBUSTION SCIENCE AND TECHNOLOGY, 179(11), 2309–2334. https://doi.org/10.1080/00102200701484191 Kolera-Gokula, H., & Echekki, T. (2006). Direct numerical simulation of premixed flame kernel-vortex interactions in hydrogen-air mixtures. COMBUSTION AND FLAME, 146(1-2), 155–167. https://doi.org/10.1016/j.combustflame.2006.04.002 Ranganath, B., & Echekki, T. (2006). On the role of heat and mass transport during the mutual annihilation of two premixed propane-air flames. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 49(25-26), 5075–5080. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.029 Ranganath, B., & Echekki, T. (2006). One-Dimensional Turbulence-based closure for turbulent non-premixed flames. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 6(7), 409–418. https://doi.org/10.1504/PCFD.2006.010966 Danby, S. J., & Echekki, T. (2006). Proper orthogonal decomposition analysis of autoignition simulation data of nonhomogeneous hydrogen-air mixtures. COMBUSTION AND FLAME, 144(1-2), 126–138. https://doi.org/10.1016/j.combustflame.2005.06.014 Ranganath, B., & Echekki, T. (2005). Effects of preferential and differential diffusion on the mutual annihilation of two premixed hydrogen-air flames. COMBUSTION THEORY AND MODELLING, 9(4), 659–672. https://doi.org/10.1080/13647830500294006 Echekki, T. (2004). Numerical investigation of buoyancy effects on triple flame stability. COMBUSTION SCIENCE AND TECHNOLOGY, 176(3), 381–407. https://doi.org/10.1080/00102200490270120 Echekki, T., Chen, J.-Y., & Hegde, U. (2004). Numerical investigation of buoyancy effects on triple flame stability. Combustion Science and Technology, 176(3), 381–407. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-1542316705&partnerID=MN8TOARS Echekki, T., & Chen, J. H. (2003). Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. COMBUSTION AND FLAME, 134(3), 169–191. https://doi.org/10.1016/S0010-2180(03)00088-9 Echekki, T., & Chen, J. H. (2002). High-temperature combustion in autoigniting non-homogeneous hydrogen/air mixtures. PROCEEDINGS OF THE COMBUSTION INSTITUTE, Vol. 29, pp. 2061–2068. https://doi.org/10.1016/S1540-7489(02)80251-6 Echekki, T., & Chen, J. H. (2002). High-temperature combustion in autoigniting non-homogeneous hydrogen/air mixtures. Proceedings of the Combustion Institute, 29(2), 2061–2068. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84915794542&partnerID=MN8TOARS Hewson, J. C., Kerstein, A. R., & Echekki, T. (2002). One-dimensional stochastic simulation of advection-diffusion-reaction couplings in turbulent combustion. In Fluid Mechanics and its Applications (Vol. 70, pp. 113–124). https://doi.org/10.1007/978-94-017-1998-8_9 Echekki, T., Kerstein, A. R., Dreeben, T. D., & Chen, J.-Y. (2001). 'One-dimensional turbulence' simulation of turbulent jet diffusion flames: Model formulation and illustrative applications. Combustion and Flame, 125(3), 1083–1105. https://doi.org/10.1016/S0010-2180(01)00228-0 Chen, J.-Y., & Echekki, T. (2001). Numerical study of buoyancy effects on the structure and propagation of triple flames. Combustion Theory and Modelling, 5(4), 499–515. https://doi.org/10.1088/1364-7830/5/4/301 Echekki, T., & Chen, J. H. (1999). Analysis of the contribution of curvature to premixed flame propagation. Combustion and Flame, 118(1-2), 308–311. https://doi.org/10.1016/S0010-2180(99)00006-1 Chen, J. H., Echekki, T., & Kollmann, W. (1999). The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion. Combustion and Flame, 116(1-2), 15–48. https://doi.org/10.1016/S0010-2180(98)00026-1 Peters, N., Terhoeven, P., Chen, J. H., & Echekki, T. (1998). Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Symposium (International) on Combustion, 27(1), 833–839. https://doi.org/10.1016/S0082-0784(98)80479-7 Echekki, T., & Chen, J. H. (1998). Structure and propagation of methanol-air triple flames. Combustion and Flame, 114(1-2), 231–245. https://doi.org/10.1016/S0010-2180(97)00287-3 Echekki, T. (1997). A quasi-one-dimensional premixed flame model with cross-stream diffusion. Combustion and Flame, 110(3), 335–350. https://doi.org/10.1016/S0010-2180(97)00079-5 Gran, I. R., Echekki, T., & Chen, J. H. (1996). Negative flame speed in an unsteady 2-D premixed flame: A computational study. Symposium (International) on Combustion, 26(1), 323–329. https://doi.org/10.1016/S0082-0784(96)80232-3 Echekki, T., Chen, J. H., & Gran, I. (1996). The mechanism of mutual annihilation of stoichiometric premixed methane-air flames. Symposium (International) on Combustion, 26(1), 855–863. https://doi.org/10.1016/S0082-0784(96)80295-5 Echekki, T., & Chen, J. H. (1996). Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combustion and Flame, 106(1-2), 184–202. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0030005570&partnerID=MN8TOARS Ferziger, J. H., & Echekki, T. (1993). A Simplified Reaction Rate Model and its Application to the Analysis of Premixed Flames. Combustion Science and Technology, 89(5-6), 293–315. https://doi.org/10.1080/00102209308924116 Echekki, T., & Ferziger, J. H. (1993). Studies of Curvature Effects on Laminar Premixed Flames: Stationary Cylindrical Flames. Combustion Science and Technology, 90(1-4), 231–252. https://doi.org/10.1080/00102209308907612 Poinsot, T., Echekki, T., & Mungal, M. G. (1992). A study of the laminar flame tip and implications for premixed turbulent combustion. Combustion Science and Technology, 81(1-3), 45–73. https://doi.org/10.1080/00102209208951793 Echekki, T., & Mungal, M. G. (1991). Flame speed measurements at the tip of a slot burner: Effects of flame curvature and hydrodynamic stretch. Symposium (International) on Combustion, 23(1), 455–461. https://doi.org/10.1016/S0082-0784(06)80291-2