Thomas LaBean Simpson, A., Krissanaprasit, A., Chester, D., Koehler, C., Labean, T. H., & Brown, A. C. (2024, March 9). Utilizing multiscale engineered biomaterials to examine TGF-β-mediated myofibroblastic differentiation. WOUND REPAIR AND REGENERATION. https://doi.org/10.1111/wrr.13168 Hosseini, M., Rahmanian, V., Pirzada, T., Frick, N., Krissanaprasit, A., Khan, S. A., & LaBean, T. H. (2022). DNA aerogels and DNA-wrapped CNT aerogels for neuromorphic applications. MATERIALS TODAY BIO, 16. https://doi.org/10.1016/j.mtbio.2022.100440 Frick, N., Hosseini, M., Guilbaud, D., Gao, M., & LaBean, T. H. (2022). Modeling and characterization of stochastic resistive switching in single Ag2S nanowires. SCIENTIFIC REPORTS, 12(1). https://doi.org/10.1038/s41598-022-09893-4 Hosseini, M., Frick, N., Guilbaud, D., Gao, M., & LaBean, T. H. (2022). Resistive switching of two-dimensional Ag2S nanowire networks for neuromorphic applications. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 40(4). https://doi.org/10.1116/6.0001867 Gao, M., Krissanaprasit, A., Miles, A., Hsiao, L. C., & LaBean, T. H. (2021). Mechanical and Electrical Properties of DNA Hydrogel-Based Composites Containing Self-Assembled Three-Dimensional Nanocircuits. APPLIED SCIENCES-BASEL, 11(5). https://doi.org/10.3390/app11052245 Krissanaprasit, A., Key, C. M., Froehlich, K., Pontula, S., Mihalko, E., Dupont, D. M., … LaBean, T. H. (2021, April 21). Multivalent Aptamer-Functionalized Single-Strand RNA Origami as Effective, Target-Specific Anticoagulants with Corresponding Reversal Agents. ADVANCED HEALTHCARE MATERIALS. https://doi.org/10.1002/adhm.202001826 Krissanaprasit, A., Key, C. M., Pontula, S., & LaBean, T. H. (2021). [Review of Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers]. CHEMICAL REVIEWS, 121(22), 13797–13868. https://doi.org/10.1021/acs.chemrev.0c01332 Krissanaprasit, A., Key, C., Fergione, M., Froehlich, K., Pontula, S., Hart, M., … LaBean, T. H. (2019). Genetically Encoded, Functional Single-Strand RNA Origami: Anticoagulant. ADVANCED MATERIALS, 31(21). https://doi.org/10.1002/adma.201808262 Hernandez-Garcia, A., Estrich, N. A., Werten, M. W. T., Maarel, J. R. C., LaBean, T. H., Wolf, F. A., … Vries, R. (2017). 2Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS NANO, 11(1), 144–152. https://doi.org/10.1021/acsnano.6b05938 Estrich, N. A., Hernandez-Garcia, A., Vries, R., & LaBean, T. H. (2017). Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. ACS NANO, 11(1), 831–842. https://doi.org/10.1021/acsnano.6b07291 Majikes, J. M., Nash, J. A., & LaBean, T. H. (2017). Search for effective chemical quenching to arrest molecular assembly and directly monitor DNA nanostructure formation. NANOSCALE, 9(4), 1637–1644. https://doi.org/10.1039/c6nr08433h Majikes, J. M., Ferraz, L. C. C., & LaBean, T. H. (2017). pH-Driven Actuation of DNA Origami via Parallel I-Motif Sequences in Solution and on Surfaces. BIOCONJUGATE CHEMISTRY, 28(7), 1821–1825. https://doi.org/10.1021/acs.bioconjchem.7b00288 Majumder, U., Garg, S., LaBean, T. H., & Reif, J. H. (2016). Activatable tiles for compact robust programmable molecular assembly and other applications. Natural Computing, 15(4), 611–634. https://doi.org/10.1007/S11047-015-9532-3 Majikes, J. M., Nash, J. A., & LaBean, T. H. (2016). Competitive annealing of multiple DNA origami: formation of chimeric origami. NEW JOURNAL OF PHYSICS, 18. https://doi.org/10.1088/1367-2630/18/11/115001 Rangnekar, A., Nash, J. A., Goodfred, B., Yingling, Y. G., & LaBean, T. H. (2016). Design of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures. MOLECULES, 21(2). https://doi.org/10.3390/molecules21020202 Brown, S., Majikes, J., Martinez, A., Giron, T. M., Fennell, H., Samano, E. C., & LaBean, T. H. (2015). An easy-to-prepare mini-scaffold for DNA origami. NANOSCALE, 7(40), 16621–16624. https://doi.org/10.1039/c5nr04921k Pedersen, R. O., Kong, J., Achim, C., & LaBean, T. H. (2015). Comparative Incorporation of PNA into DNA Nanostructures. MOLECULES, 20(9), 17645–17658. https://doi.org/10.3390/molecules200917645 Gnapareddy, B., Ahn, S. J., Dugasani, S. R., Kim, J. A., Amin, R., Mitta, S. B., … Park, S. H. (2015). Coverage percentage and raman measurement of cross-tile and scaffold cross-tile based DNA nanostructures. COLLOIDS AND SURFACES B-BIOINTERFACES, 135, 677–681. https://doi.org/10.1016/j.colsurfb.2015.08.013 Garg, S., Chandran, H., Gopalkrishnan, N., LaBean, T. H., & Reif, J. (2015). Directed Enzymatic Activation of 1-D DNA Tiles. ACS NANO, 9(2), 1072–1079. https://doi.org/10.1021/nn504556v Campos, R., Zhang, S., Majikes, J. M., Ferraz, L. C. C., LaBean, T. H., Dong, M. D., & Ferapontova, E. E. (2015). Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG. Chemical Communications, 51(74), 14111–14114. https://doi.org/10.1039/c5cc04678e Rangnekar, A., & LaBean, T. H. (2014). [Review of Building DNA DNA Nanostructures for Molecular Computation, Templated Assembly, and Biological Applications]. ACCOUNTS OF CHEMICAL RESEARCH, 47(6), 1778–1788. https://doi.org/10.1021/ar500023b Shi, X., Lu, W., Wang, Z., Pan, L., Cui, G., Xu, J., & LaBean, T. H. (2014). Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. NANOTECHNOLOGY, 25(7). https://doi.org/10.1088/0957-4484/25/7/075602 Hakker, L., Marchi, A. N., Harris, K. A., LaBean, T. H., & Agris, P. F. (2014). Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 32(2), 319–329. https://doi.org/10.1080/07391102.2012.763184 Pilo-Pais, M., Watson, A., Demers, S., LaBean, T. H., & Finkelstein, G. (2014). Surface-Enhanced Raman Scattering Plasmonic Enhancement Using DNA Origami-Based Complex Metallic Nanostructures. NANO LETTERS, 14(4), 2099–2104. https://doi.org/10.1021/nl5003069 Marchi, A. N., Saaem, I., Vogen, B. N., Brown, S., & LaBean, T. H. (2014). Toward Larger DNA Origami. NANO LETTERS, 14(10), 5740–5747. https://doi.org/10.1021/nl502626s Chandran, H., Rangnekar, A., Shetty, G., Schultes, E. A., Reif, J. H., & LaBean, T. H. (2013). An autonomously self-assembling dendritic DNA nanostructure for target DNA detection. BIOTECHNOLOGY JOURNAL, 8(2), 221–227. https://doi.org/10.1002/biot.201100499 Marchi, A. N., Saaem, I., Tian, J., & LaBean, T. H. (2013). One-Pot Assembly of a Hetero-dimeric DNA Origami from Chip-Derived Staples and Double-Stranded Scaffold. ACS NANO, 7(2), 903–910. https://doi.org/10.1021/nn302322j Saaem, I., & LaBean, T. H. (2013). [Review of Overview of DNA origami for molecular self-assembly]. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 5(2), 150–162. https://doi.org/10.1002/wnan.1204 Pedersen, R. O., Loboa, E. G., & LaBean, T. H. (2013). Sensitization of Transforming Growth Factor-beta Signaling by Multiple Peptides Patterned on DNA Nanostructures. BIOMACROMOLECULES, 14(12), 4157–4160. https://doi.org/10.1021/bm4011722 Qian, P. F., Seo, S., Kim, J., Kim, S., Lim, B. S., Liu, W. K., … Kim, M. K. (2012). DNA nanotube formation based on normal mode analysis. Nanotechnology, 23(10), 105704. https://doi.org/10.1088/0957-4484/23/10/105704 Lee, J., Amin, R., Kim, B., Kim, S., Lee, C.-W., Kim, J. M., … Park, S. H. (2012). Fabrication of zigzag and folded DNA nanostructures by an angle control scheme. Soft Matter, 8(1), 44–47. https://doi.org/10.1039/c1sm06379k Rangnekar, A., Zhang, A. M., Li, S. S., Bompiani, K. M., Hansen, M. N., Gothelf, K. V., … LaBean, T. H. (2012). Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 673–681. https://doi.org/10.1016/j.nano.2011.08.011 Pilo-Pais, M., Goldberg, S., Samano, E., LaBean, T. H., & Finkelstein, G. (2011). Connecting the Nanodots: Programmable Nanofabrication of Fused Metal Shapes on DNA Templates. Nano Letters, 11(8), 3489–3492. https://doi.org/10.1021/nl202066c Majumder, U., Rangnekar, A., Gothelf, K. V., Reif, J. H., & LaBean, T. H. (2011). Design and Construction of Double-Decker Tile as a Route to Three-Dimensional Periodic Assembly of DNA. Journal of the American Chemical Society, 133(11), 3843–3845. https://doi.org/10.1021/ja1108886 Rangnekar, A., Gothelf, K. V., & LaBean, T. H. (2011). Design and synthesis of DNA four-helix bundles. Nanotechnology, 22(23), 235601. https://doi.org/10.1088/0957-4484/22/23/235601 Kim, S., Kim, J., Qian, P., Shin, J., Amin, R., Ahn, S. J., … Park, S. H. (2011). Intrinsic DNA curvature of double-crossover tiles. Nanotechnology, 22(24), 245706. https://doi.org/10.1088/0957-4484/22/24/245706 Carter, J. D., & LaBean, T. H. (2011). Organization of Inorganic Nanomaterials via Programmable DNA Self-Assembly and Peptide Molecular Recognition. ACS Nano, 5(3), 2200–2205. https://doi.org/10.1021/nn1033983 Samano, E. C., Pilo-Pais, M., Goldberg, S., Vogen, B. N., Finkelstein, G., & LaBean, T. H. (2011). Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter, 7(7), 3240. https://doi.org/10.1039/c0sm01318h Saaem, I., Ma, K.-S., Marchi, A. N., LaBean, T. H., & Tian, J. (2010). In situ Synthesis of DNA Microarray on Functionalized Cyclic Olefin Copolymer Substrate. ACS Applied Materials & Interfaces, 2(2), 491–497. https://doi.org/10.1021/am900884b Hansen, M. N., Zhang, A. M., Rangnekar, A., Bompiani, K. M., Carter, J. D., Gothelf, K. V., & LaBean, T. H. (2010). Weave Tile Architecture Construction Strategy for DNA Nanotechnology. Journal of the American Chemical Society, 132(41), 14481–14486. https://doi.org/10.1021/ja104456p LaBean, T. H. (2009). Another dimension for DNA art. Nature, 459(7245), 331–332. https://doi.org/10.1038/459331a Li, H., Carter, J. D., & LaBean, T. H. (2009). Nanofabrication by DNA self-assembly. Materials Today, 12(5), 24–32. https://doi.org/10.1016/S1369-7021(09)70157-9 Sahu, S., LaBean, T. H., & Reif, J. H. (2008). A DNA Nanotransport Device Powered by Polymerase ϕ29. Nano Letters, 8(11), 3870–3878. https://doi.org/10.1021/nl802294d Majumder, U., LaBean, T. H., & Reif, J. H. (2008). Activatable Tiles: Compact, Robust Programmable Assembly and Other Applications. In DNA Computing (pp. 15–25). https://doi.org/10.1007/978-3-540-77962-9_2 Sebba, D. S., LaBean, T. H., & Lazarides, A. A. (2008). Plasmon coupling in binary metal core–satellite assemblies. Applied Physics B, 93(1), 69–78. https://doi.org/10.1007/s00340-008-3212-2 Sebba, D. S., Mock, J. J., Smith, D. R., LaBean, T. H., & Lazarides, A. A. (2008). Reconfigurable Core−Satellite Nanoassemblies as Molecularly-Driven Plasmonic Switches. Nano Letters, 8(7), 1803–1808. https://doi.org/10.1021/nl080029h Coskun, U. C., Mebrahtu, H., Huang, P. B., Huang, J., Sebba, D., Biasco, A., … Finkelstein, G. (2008). Single-electron transistors made by chemical patterning of silicon dioxide substrates and selective deposition of gold nanoparticles. Applied Physics Letters, 93(12), 123101. https://doi.org/10.1063/1.2981705 Park, S. H., Finkelstein, G., & LaBean, T. H. (2008). Stepwise Self-Assembly of DNA Tile Lattices Using dsDNA Bridges. Journal of the American Chemical Society, 130(1), 40–41. https://doi.org/10.1021/ja078122f Reif, J. H., & LaBean, T. H. (2007). Autonomous Programmable Biomolecular Devices Using Self-assembled DNA Nanostructures. In Logic, Language, Information and Computation (pp. 297–306). https://doi.org/10.1007/978-3-540-73445-1_21 LaBean, T. H., & Li, H. (2007). Constructing novel materials with DNA. Nano Today, 2(2), 26–35. https://doi.org/10.1016/S1748-0132(07)70056-7 Reza, F., Josephs, E., Yuan, F., Van Dyke, B., Lin, S., Feltz, M., … LaBean, T. (2007). Engineering novel synthetic biological systems. IET Synthetic Biology, 1(1), 48–52. https://doi.org/10.1049/iet-stb:20060004 LaBean, T. (2006). DNA bulks up. Nature Materials, 5(10), 767–768. https://doi.org/10.1038/nmat1745 Majumder, U., Sahu, S., LaBean, T. H., & Reif, J. H. (2006). Design and Simulation of Self-repairing DNA Lattices. In DNA Computing (pp. 195–214). https://doi.org/10.1007/11925903_15 Park, S. H., Pistol, C., Ahn, S. J., Reif, J. H., Lebeck, A. R., Dwyer, C., & LaBean, T. H. (2006). Finite-Size, Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. Angewandte Chemie International Edition, 45(5), 735–739. https://doi.org/10.1002/anie.200503797 Park, S. H., Pistol, C., Ahn, S. J., Reif, J. H., Lebeck, A. R., Dwyer, C., & LaBean, T. H. (2006). Finite-Size, Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. Angewandte Chemie International Edition, 45(40), 6607–6607. https://doi.org/10.1002/anie.200690141 Park, S. H., Prior, M. W., LaBean, T. H., & Finkelstein, G. (2006). Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules. Applied Physics Letters, 89(3), 033901. https://doi.org/10.1063/1.2234282 Li, H., LaBean, T. H., & Kenan, D. J. (2006). Single-chain antibodies against DNA aptamers for use as adapter molecules on DNA tile arrays in nanoscale materials organization. Organic & Biomolecular Chemistry, 4(18), 3420. https://doi.org/10.1039/b606391h Gothelf, K. V., & LaBean, T. H. (2005). DNA-programmed assembly of nanostructures. Organic & Biomolecular Chemistry, 3(22), 4023. https://doi.org/10.1039/b510551j Reif, J. H., LaBean, T. H., Sahu, S., Yan, H., & Yin, P. (2005). Design, Simulation, and Experimental Demonstration of Self-assembled DNA Nanostructures and Motors. In Lecture Notes in Computer Science (pp. 173–187). https://doi.org/10.1007/11527800_14 Park, S. H., Yin, P., Liu, Y., Reif, J. H., LaBean, T. H., & Yan, H. (2005). Programmable DNA Self-Assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters, 5(4), 729–733. https://doi.org/10.1021/nl050175c Park, S. H., Barish, R., Li, H., Reif, J. H., Finkelstein, G., Yan, H., & LaBean, T. H. (2005). Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires. Nano Letters, 5(4), 693–696. https://doi.org/10.1021/nl050108i LaBean, T. (2004). Bionanotechnology: Lessons from Nature. By David S  Goodsell. Hoboken (New Jersey): Wiley‐Liss. $79.95. xii + 337 p; ill.; index. ISBN: 0–471–41719–X. 2004. The Quarterly Review of Biology, 79(4), 415–415. https://doi.org/10.1086/428169 Liu, D., Park, S. H., Reif, J. H., & LaBean, T. H. (2004). DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proceedings of the National Academy of Sciences, 101(3), 717–722. https://doi.org/10.1073/pnas.0305860101 Li, H., Park, S. H., Reif, J. H., LaBean, T. H., & Yan, H. (2004). DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays. Journal of the American Chemical Society, 126(2), 418–419. https://doi.org/10.1021/ja0383367 Park, S. H., Yan, H., Reif, J. H., LaBean, T. H., & Finkelstein, G. (2004). Electronic nanostructures templated on self-assembled DNA scaffolds. Nanotechnology, 15(10), S525–S527. https://doi.org/10.1088/0957-4484/15/10/005 Ahn, S. J., Kaholek, M., Lee, W.-K., LaMattina, B., LaBean, T. H., & Zauscher, S. (2004). Surface-Initiated Polymerization on Nanopatterns Fabricated by Electron-Beam Lithography. Advanced Materials, 16(23-24), 2141–2145. https://doi.org/10.1002/adma.200401055 Gehani, A., LaBean, T., & Reif, J. (2003). DNA-based Cryptography. In Aspects of Molecular Computing (pp. 167–188). https://doi.org/10.1007/978-3-540-24635-0_12