Tien Khai Nguyen Bressan, A., Mazzola, M., & Nguyen, K. t. (2024, September). GENERIC PROPERTIES OF CONJUGATE POINTS IN OPTIMAL CONTROL PROBLEMS. MATHEMATICAL CONTROL AND RELATED FIELDS. https://doi.org/10.3934/mcrf.2024042 Bociu, L., Ftaka, E., Nguyen, K. T., & Schino, J. (2024). Piecewise regular solutions to scalar balance laws with singular nonlocal sources. JOURNAL OF DIFFERENTIAL EQUATIONS, 409, 181–222. https://doi.org/10.1016/j.jde.2024.07.004 Murdza, A., & Nguyen, K. T. (2023). [Review of A lower bound on the quantitative version of the transversality theorem]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 528(1). https://doi.org/10.1016/j.jmaa.2023.127539 Murdza, A., & Nguyen, K. T. (2023). A quantitative version of the transversality theorem. Communications in Mathematical Sciences. https://doi.org/10.4310/cms.2023.v21.n5.a5 Bressan, A., Mazzola, M., & Nguyen, K. T. (2023, March 5). Diffusion Approximations of Markovian Solutions to Discontinuous ODEs. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. https://doi.org/10.1007/s10884-023-10250-w Ancona, F., Bianchini, S., Bressan, A., Colombo, R. M., & Nguyen, K. T. (2023, February 8). EXAMPLES AND CONJECTURES ON THE REGULARITY OF SOLUTIONS TO BALANCE LAWS. QUARTERLY OF APPLIED MATHEMATICS. https://doi.org/10.1090/qam/1647 Bressan, A., & Nguyen, K. T. T. (2023, January 2). Generic Properties of First-Order Mean Field Games. DYNAMIC GAMES AND APPLICATIONS, Vol. 1. https://doi.org/10.1007/s13235-022-00487-3 Marigonda, A., & Nguyen, K. T. (2023, May). STOCHASTIC EQUILIBRIUM SOLUTION FOR A DEBT MANAGEMENT PROBLEM WITH CURRENCY DEVALUATION. MATHEMATICAL CONTROL AND RELATED FIELDS, Vol. 5. https://doi.org/10.3934/mcrf.2023014 Marigonda, A., & Nguyen, K. T. (2022). A system of first order Hamilton-Jacobi equations related to an optimal debt management problem. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 29(4). https://doi.org/10.1007/s00030-022-00774-3 Barron, E. N., & Nguyen, K. T. (2022, May 21). Generalized Differential Games. DYNAMIC GAMES AND APPLICATIONS. https://doi.org/10.1007/s13235-022-00452-0 Bianchini, S., Dutta, P., & Nguyen, K. T. (2022). Metric Entropy for Hamilton--Jacobi Equations with Uniformly Directionally Convex Hamiltonian. SIAM Journal on Mathematical Analysis. https://doi.org/10.1137/22M1475430 Bressan, A., Galtung, S. T., Grunert, K., & Nguyen, K. T. (2022, June 24). Shock interactions for the Burgers-Hilbert equation. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, Vol. 6. https://doi.org/10.1080/03605302.2022.2084628 Capuani, R., Dutta, P., & Nguyen, K. T. (2021). METRIC ENTROPY FOR FUNCTIONS OF BOUNDED TOTAL GENERALIZED VARIATION. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 53(1), 1168–1190. https://doi.org/10.1137/20m1310953 Bressan, A., Mazzola, M., & Nguyen, K. T. (2021, March 12). Markovian Solutions to Discontinuous ODEs. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. https://doi.org/10.1007/s10884-021-09974-4 Ancona, F., & Nguyen, K. T. (2021). ON THE GLOBAL CONTROLLABILITY OF SCALAR CONSERVATION LAWS WITH BOUNDARY AND SOURCE CONTROLS. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 59(6), 4314–4338. https://doi.org/10.1137/20M1369221 Gilmore, S., & Nguyen, K. T. (2021). SBV regularity for Burgers-Poisson equation. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 500(1). https://doi.org/10.1016/j.jmaa.2021.125095 A model of debt with bankruptcy risk and currency devaluation. (2020). Minimax Theory and Its Applications. Retrieved from https://www.heldermann.de/MTA/MTA05/MTA052/mta05014.htm Quantitative compactness estimate for scalar conservation laws with nonconvex fluxes. (2020). Hyperbolic problems: theory, numerics, applications, 248–255. AIMS Ser. Appl. Math., 10. Bressan, A., Mazzola, M., & Nguyen, K. T. (2019). APPROXIMATION OF SWEEPING PROCESSES AND CONTROLLABILITY FOR A SET-VALUED EVOLUTION. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 57(4), 2487–2514. https://doi.org/10.1137/18m1189610 Mazzola, M., & Nguyen, K. T. (2019). Lyapunov’s Theorem via Baire Category. In Springer INdAM Series (Vol. 32, pp. 181–194). https://doi.org/10.1007/978-3-030-17949-6_10 Ancona, F., Glass, O., & Nguyen, K. T. (2019). ON KOLMOGOROV ENTROPY COMPACTNESS ESTIMATES FOR SCALAR CONSERVATION LAWS WITHOUT UNIFORM CONVEXITY. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 51(4), 3020–3051. https://doi.org/10.1137/18m1198090 Dutta, P., & Nguyen, K. T. (2018). Covering numbers for bounded variation functions. Journal of Mathematical Analysis and Applications, 468(2), 1131–1143. https://doi.org/10.1016/j.jmaa.2018.08.062 Bressan, A., Marigonda, A., Nguyen, K. T., & Palladino, M. (2017). A Stochastic Model of Optimal Debt Management and Bankruptcy. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 8(1), 841–873. https://doi.org/10.1137/16m1095019 Cavagnari, G., Marigonda, A., Nguyen, K. T., & Priuli, F. S. (2017). Generalized Control Systems in the Space of Probability Measures. Set-Valued and Variational Analysis, 26(3), 663–691. https://doi.org/10.1007/s11228-017-0414-y Bressan, A., & Nguyen, K. T. (2016). An equilibrium model of debt and bankruptcy. ESAIM: Control, Optimisation and Calculus of Variations, 22(4), 953–982. https://doi.org/10.1051/cocv/2016030 COMPACTNESS ESTIMATES FOR HAMILTON-JACOBI EQUATIONS DEPENDING ON SPACE. (2016). Bulletin of the Institute of Mathematics Academia Sinica. Retrieved from https://www.math.sinica.edu.tw/bulletins/20161/2016104.pdf Nguyen, T. K., & Grunert, K. (2016). Global existence of weak solutions for Burgers-Poisson equation. Journal of Differential Equations, 23(4), 23–46. Grunert, K., & Nguyen, K. T. (2016). On the Burgers–Poisson equation. Journal of Differential Equations, 261(6), 3220–3246. https://doi.org/10.1016/j.jde.2016.05.028 Bressan, A., & Nguyen, K. T. (2018). Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games. DYNAMIC GAMES AND APPLICATIONS, 8(1), 42–78. https://doi.org/10.1007/s13235-016-0206-2 Bressan, A., Mazzola, M., & Nguyen, K. T. (2016). The bang–bang theorem via Baire category: a dual approach. Nonlinear Differential Equations and Applications NoDEA, 23(4). https://doi.org/10.1007/s00030-016-0400-3 Nguyen, T. K., Ancona, F., & Cannarsa, P. (2016). The compactness estimates for Hamilton Jacobi Equations depending on space. Bulletin of the Institute of Mathematics, Academia Sinica, 11, 63–113. Bressan, A., & Nguyen, K. T. (2015). Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 10(2), 255–293. https://doi.org/10.3934/nhm.2015.10.255 Nguyen, T. K., Ancona, F., & Glass, O. (2015). On compactness estimates for general nonlinear system hyperbolic systems. Annales De l'Institut Henri Poincaré, Analyse Non Linéaire, 32(6), 1229–1257. Bressan, A., & Nguyen, K. T. (2015). Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 10(4), 717–748. https://doi.org/10.3934/nhm.2015.10.717 Cannarsa, P., Marigonda, A., & Nguyen, K. T. (2015). Optimality conditions and regularity results for time optimal control problems with differential inclusions. Journal of Mathematical Analysis and Applications, 427(1), 202–228. https://doi.org/10.1016/j.jmaa.2015.02.027 Ancona, F., Cannarsa, P., & Nguyen, K. T. (2015). Quantitative Compactness Estimates for Hamilton–Jacobi Equations. Archive for Rational Mechanics and Analysis, 219(2), 793–828. https://doi.org/10.1007/s00205-015-0907-5 Marigonda, A., Nguyen, K. T., & Vittone, D. (2014). BV Regularity and Differentiability Properties of a Class of Upper Semicontinuous Functions. In I. Lirkov, S. Margenov, & J. Waśniewski (Eds.), Large-Scale Scientific Computing: Vol. 8353 LNCS (pp. 116–124). https://doi.org/10.1007/978-3-662-43880-0_12 Bressan, A., & Nguyen, K. T. (2014). Global Existence of Weak Solutions for the Burgers--Hilbert Equation. SIAM Journal on Mathematical Analysis, 46(4), 2884–2904. https://doi.org/10.1137/140957536 Ancona, F., Glass, O., & Nguyen, K. T. (2015). On compactness estimates for hyperbolic systems of conservation laws. Annales De l'Institut Henri Poincare (C) Non Linear Analysis, 32(6), 1229–1257. https://doi.org/10.1016/j.anihpc.2014.09.002 On quantitative compactness estimates for hyperbolic conservation laws. (2014). Hyperbolic problems: theory, numerics, applications, 249–257, AIMS Ser. Appl. Math., 8, Am. Inst. Math. Sci. (AIMS), Springfield, MO, Colombo, G., Nguyen, K. T., & Nguyen, L. V. (2013). Non-Lipschitz points and the SBV regularity of the minimum time function. Calculus of Variations and Partial Differential Equations, 51(1-2), 439–463. https://doi.org/10.1007/s00526-013-0682-9 Colombo, G., & Nguyen, K. T. (2013). On the minimum time function around the origin. Mathematical Control and Related Fields, 3(1), 51–82. https://doi.org/10.3934/mcrf.2013.3.51 Marigonda, A., Nguyen, K. T., & Vittone, D. (2013). Some regularity results for a class of upper semicontinuous functions. Indiana University Mathematics Journal, 62(1), 45–89. https://doi.org/10.1512/iumj.2013.62.4896 Ancona, F., Glass, O., & Nguyen, K. T. (2012). Lower compactness estimates for scalar balance laws. Communications on Pure and Applied Mathematics, 65(9), 1303–1329. https://doi.org/10.1002/cpa.21406 Nguyen, T. K., & Vittone, D. (2012). Rectifiability of special singularities of non-lipschitz functions. Journal of Convex Analysis, 19(1), 159–170. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84856829336&partnerID=MN8TOARS Albano, P., Cannarsa, P., Nguyen, K. T., & Sinestrari, C. (2012). Singular gradient flow of the distance function and homotopy equivalence. Mathematische Annalen, 356(1), 23–43. https://doi.org/10.1007/s00208-012-0835-8 Cannarsa, P., & Nguyen, K. T. (2011). Exterior Sphere Condition and Time Optimal Control for Differential Inclusions. SIAM Journal on Control and Optimization, 49(6), 2558–2576. https://doi.org/10.1137/110825078 Nguyen, K. T. (2010). Hypographs satisfying an external sphere condition and the regularity of the minimum time function. Journal of Mathematical Analysis and Applications, 372(2), 611–628. https://doi.org/10.1016/j.jmaa.2010.07.010 Colombo, G., & Nguyen, K. T. (2010). On the Structure of the Minimum Time Function. SIAM Journal on Control and Optimization, 48(7), 4776–4814. https://doi.org/10.1137/090774549 Colombo, G., & Nguyen, K. T. (2009). Quantitative isoperimetric inequalities for a class of nonconvex sets. Calculus of Variations and Partial Differential Equations, 37(1-2), 141–166. https://doi.org/10.1007/s00526-009-0256-z CRITICAL POINTS OF NON-C2 FUNCTIONALS. (2007). Topological Methods in Nonlinear Analysis. Nguyen, T. K., Duong, D. M., & Tran, H. V. (2007). Critical points of non-C2 functional. Topological Methods of Nonlinear Analysis, 29(1), 35–68. Nguyen, T. K., Duong, D. M., & Tran, H. V. (2007). Morse-Palais Lemma for nonsmooth functionals on normed spaces. Proceedings of the American Mathematical Society, 135(3), 921–927. Duc, D. M., Hung, T. V., & Khai, N. T. (2007). Morse-palais lemma for nonsmooth functionals on normed spaces. Proceedings of the American Mathematical Society, 135(3), 921–927. https://doi.org/10.1090/S0002-9939-06-08662-X