@article{srivastava_abad_knight_zeller_mavrodieva_nakhla_2020, title={Draft Genome Resource for the Ex-types of Phytophthora ramorum, P. kernoviae, and P. melonis, Species of Regulatory Concern, Using Ultra-Long Read MinION Nanopore Sequencing}, volume={33}, ISSN={["1943-7706"]}, DOI={10.1094/MPMI-12-19-0342-A}, abstractNote={ Phytophthora ramorum, P. kernoviae, and P. melonis are each species of current regulatory concern in the United States, the United Kingdom, and other areas of the world. Ex-type material are cultures and duplicates of the type that was used to describe each species and that are deposited in additional culture collections. Using these type specimens as references is essential to designing correct molecular identification and diagnostic systems. Here, we report a whole genome sequence for the Ex-type material of P. ramorum, P. kernoviae, and P. melonis generated using high-throughput sequencing via the MinION third generation platform from Oxford Nanopore Technology. We assembled the quality filtered reads into contigs for each species. We assembled the continuous contigs of P. ramorum, P. kernoviae, and P. melonis (1,322, 545, and 2,091 contigs, respectively). The ab initio prediction of genes from these species reveals that there are 16,838, 12,793, and 34,580 genes in P. ramorum, P. kernoviae, and P. melonis, respectively. Of the 34,580 P. melonis genes, 10,164 genes were conserved among all three of these Phytophthora species which may include pathogenicity genes. We compared the ex-type of P. ramorum EU1 lineage assembly with another selected isolate of EU1 available at the National Center for Biotechnology Information and found 251,859 single nucleotide polymorphisms (SNPs) genome-wide; the comparison with the EU2 lineage genome isolate revealed 441,859 SNPs genome-wide. This genome resource of the ex-types of P. ramorum, and P. kernoviae is a significant contribution as these species are among the most important pathogens of regulatory concern in different regions of the world. }, number={6}, journal={MOLECULAR PLANT-MICROBE INTERACTIONS}, author={Srivastava, Subodh K. and Abad, Z. Gloria and Knight, Leandra M. and Zeller, Kurt and Mavrodieva, Vessela and Nakhla, Mark}, year={2020}, month={Jun}, pages={794–797} } @article{hilf_mavrodieva_garnsey_2005, title={Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: Characterization and distribution of CTV genotypes and association with symptoms}, volume={95}, ISSN={["1943-7684"]}, DOI={10.1094/PHYTO-95-0909}, abstractNote={ Genetic markers amplified from three noncontiguous regions by sequence specific primers designed from the partial or complete genome sequences of Citrus tristeza virus (CTV) isolates T3, T30, T36, and VT were used to assess genetic relatedness of 372 isolates in an international collection. Eighty-five isolates were judged similar to the T3 isolate, 81 to T30, 11 to T36, and 89 to VT. Fifty-one isolates were mixed infections by two or more identifiable viral genotypes, and 55 isolates could not be assigned unequivocally to a group defined by marker patterns. Maximum parsimony analysis of aligned marker sequences supported the grouping of isolates on the basis of marker patterns only. Specific disease symptoms induced in select citrus host plants were shared across molecular groups, although symptoms were least severe among isolates grouped by markers with the T30 isolate and were most severe among isolates grouped by markers with the T3 isolate. Isolates assigned the same genotype showed variable symptoms and symptom severity. A classification strategy for CTV isolates is proposed that combines genetic marker patterns and nucleotide sequence data. }, number={8}, journal={PHYTOPATHOLOGY}, author={Hilf, ME and Mavrodieva, VA and Garnsey, SM}, year={2005}, month={Aug}, pages={909–917} }