@article{hu_shirsat_muthukaruppan_li_zhang_tang_baran_lu_2024, title={Adaptive cold-load pickup considerations in 2-stage microgrid unit commitment for enhancing microgrid resilience}, volume={356}, ISSN={["1872-9118"]}, DOI={10.1016/j.apenergy.2023.122424}, abstractNote={In an extended main grid outage spanning multiple days, load shedding serves as a critical mechanism for islanded microgrids to maintain essential power and energy reserves that are indispensable for fulfilling reliability and resiliency mandates. However, using load shedding for such purposes leads to increasing occurrence of cold load pickup (CLPU) events. This study presents an innovative adaptive CLPU model that introduces a method for determining and incorporating parameters related to CLPU power and energy requirements into a two-stage microgrid unit commitment (MGUC) algorithm. In contrast to the traditional fixed-CLPU-curve approach, this model calculates CLPU duration, power, and energy demands by considering outage durations and ambient temperature variations within the MGUC process. By integrating the adaptive CLPU model into the MGUC problem formulation, it allows for the optimal allocation of energy resources throughout the entire scheduling horizon to fulfill the CLPU requirements when scheduling multiple CLPU events. The performance of the enhanced MGUC algorithm considering CLPU needs is assessed using actual load and photovoltaic (PV) data. Simulation results demonstrate significant improvements in dispatch optimality evaluated by the amount of load served, customer comfort, energy storage operation, and adherence to energy schedules. These enhancements collectively contribute to reliable and resilient microgrid operation.}, journal={APPLIED ENERGY}, author={Hu, Rongxing and Shirsat, Ashwin and Muthukaruppan, Valliappan and Li, Yiyan and Zhang, Si and Tang, Wenyuan and Baran, Mesut and Lu, Ning}, year={2024}, month={Feb} } @article{dsouza_muthukaruppan_yu_baran_lukic_vukojevic_2022, title={Assessment of Anti-Islanding Schemes on a Distribution System with High DER Penetration and Dynamic VAR Compensators}, ISSN={["2329-5759"]}, DOI={10.1109/PEDG54999.2022.9923268}, abstractNote={The recently introduced power-electronics-based dynamic VAR compensator (DVC) offers an effective solution in mitigating the impacts that high penetration distributed energy resources (DERs) have on distribution systems. One of the concerns about adopting these devices is their impact on distribution system protection, especially islanding detection. This paper proposes a hardware-in-loop (HIL) test-bed based approach to investigate the performance of islanding detection schemes on a distribution feeder. This approach facilitates the assessment of protection system performance under more realistic conditions by emulating actual devices and a distribution system. The results are based on an actual case study that is outlined to show the effectiveness of existing passive anti-islanding schemes and assess the impact of a DVC on islanding detection.}, journal={2022 IEEE 13TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG)}, author={DSouza, Keith and Muthukaruppan, Valliappan and Yu, Hui and Baran, Mesut and Lukic, Srdjan and Vukojevic, Aleksandar}, year={2022} } @article{hu_li_zhang_shirsat_muthukaruppan_tang_baran_lubkeman_lu_2021, title={A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System}, ISSN={["1944-9925"]}, DOI={10.1109/PESGM46819.2021.9638231}, abstractNote={This paper presents a load switching group based energy management system (LSG-EMS) for operating microgrids on a distribution feeder powered by one or multiple grid-forming distributed energy resources. Loads on a distribution feeder are divided into load switching groups that can be remotely switched on and off. The LSG-EMS algorithm, formulated as a mixed-integer linear programming (MILP) problem, has an objective function of maximizing the served loads while minimizing the total number of switching actions. A new set of topology constraints are developed for allowing multiple microgrids to be formed on the feeder and selecting the optimal supply path. Customer comfort is accounted for by maximizing the supply duration in the customer preferred service period and enforcing a minimum service duration. The proposed method is demonstrated on a modified IEEE 33-bus system using actual customer data. Simulation results show that the LSG-EMS successfully coordinates multiple grid-forming sources by selecting an optimal supply topology that maximizes the supply period of both the critical and noncritical loads while minimizing customer service interruptions in the service restoration process.}, journal={2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM)}, author={Hu, Rongxing and Li, Yiyan and Zhang, Si and Shirsat, Ashwin and Muthukaruppan, Valliappan and Tang, Wenyuan and Baran, Mesut and Lubkeman, David and Lu, Ning}, year={2021} } @article{shirsat_muthukaruppan_hu_lu_baran_lubkeman_tang_2021, title={Hierarchical Multi-timescale Framework For Operation of Dynamic Community Microgrid}, ISSN={["1944-9925"]}, DOI={10.1109/PESGM46819.2021.9638104}, abstractNote={Distribution system integrated community microgrids (CMGs) can restore loads during extended outages. The CMG is challenged with limited resource availability, absence of a robust grid-support, and demand-supply uncertainty. To address these challenges, this paper proposes a three-stage hierarchical multi-timescale framework for scheduling and real-time (RT) dispatch of CMGs. The CMG's ability to dynamically expand its boundary to support the neighboring grid sections is also considered. The first stage solves a stochastic day-ahead (DA) scheduling problem to obtain referral plans for optimal resource rationing. The intermediate near real-time scheduling stage updates the DA schedule closer to the dispatch time, followed by the RT dispatch stage. The proposed methodology is validated via numerical simulations on a modified IEEE 123-bus system, which shows superior performance in terms of RT load supplied under different forecast error cases, outage duration scenarios, and against the traditionally used two-stage approach.}, journal={2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM)}, author={Shirsat, Ashwin and Muthukaruppan, Valliappan and Hu, Rongxing and Lu, Ning and Baran, Mesut and Lubkeman, David and Tang, Wenyuan}, year={2021} }