@article{rahmanian_pirzada_barbieri_iftikhar_li_khan_2023, title={Mechanically robust, thermally insulating and photo-responsive aerogels designed from sol-gel electrospun PVP-TiO2 nanofibers}, volume={32}, ISSN={["2352-9407"]}, url={https://doi.org/10.1016/j.apmt.2023.101784}, DOI={10.1016/j.apmt.2023.101784}, journal={APPLIED MATERIALS TODAY}, author={Rahmanian, Vahid and Pirzada, Tahira and Barbieri, Eduardo and Iftikhar, Sherafghan and Li, Fanxing and Khan, Saad A.}, year={2023}, month={Jun} } @article{hosseini_rahmanian_pirzada_frick_krissanaprasit_khan_labean_2022, title={DNA aerogels and DNA-wrapped CNT aerogels for neuromorphic applications}, volume={16}, ISSN={["2590-0064"]}, url={https://doi.org/10.1016/j.mtbio.2022.100440}, DOI={10.1016/j.mtbio.2022.100440}, abstractNote={Nucleic acids are programmable materials that can self-assemble into defined or stochastic three-dimensional network architectures. Various attributes of self-assembled, cross-linked Deoxyribonucleic acid (DNA) hydrogels have recently been investigated, including their mechanical properties and potential biomedical functions. Herein, for the first time, we describe the successful construction of pure DNA aerogels and DNA-wrapped carbon nanotube (CNT) composite (DNA-CNT) aerogels via a single-step freeze-drying of the respective hydrogels. These aerogels reveal highly porous and randomly branched structures with low density. The electrical properties of pure DNA aerogel mimic that of a simple capacitor; in contrast, the DNA-CNT aerogel displays a fascinating resistive switching behavior in response to an applied bias voltage sweep reminiscent of a volatile memristor. We believe these novel aerogels can serve as a platform for developing complex biomimetic devices for a wide range of applications, including real-time computation, neuromorphic computing, biochemical sensing, and biodegradable functional implants. More importantly, insight obtained here on self-assembling DNA to create aerogels will pave the way to construct novel aerogel-based material platforms from DNA coated or wrapped functional entities.}, journal={MATERIALS TODAY BIO}, author={Hosseini, Mahshid and Rahmanian, Vahid and Pirzada, Tahira and Frick, Nikolay and Krissanaprasit, Abhichart and Khan, Saad A. and LaBean, Thomas H.}, year={2022}, month={Dec} } @article{rahmanian_pirzada_wang_khan_2021, title={Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality}, volume={33}, ISSN={["1521-4095"]}, url={https://doi.org/10.1002/adma.202102892}, DOI={10.1002/adma.202102892}, abstractNote={The brittle nature of early aerogels developed from inorganic precursors fueled the discovery of their organic counterparts. Prominent among these organics are cellulose aerogels because of their natural abundance, biocompatibility, sustainable precursors, and tunable properties. The hierarchical structure of cellulose, from polymers to nano/microfibers, further facilitates fabrication of materials across multiple length scales with added applicability. However, the inherent flammability, structural fragility, and low thermal stability have limited their use. Recently developed cellulose-based hybrid aerogels offer strong potential owing to their tunability and enhanced functionality brought about by combining the inherent properties of cellulose with organic and inorganic components. A survey of the historical background and scientific achievements in the design and development of cellulose-based hybrid aerogel materials is encompassed here. The impacts of incorporating organic and inorganic ingredients with cellulose and the corresponding synergistic effects are discussed in terms of their design and functionality. The underlying principles governing the structural integration and functionality enhancement are also analyzed. The latest developments of cellulose-based hybrid aerogels fabricated from nontraditional incipient aerogels, such as fibrous webs, are also explored. Finally, future opportunities that could make these materials achieve even greater impacts through improved scalability, rationally designed synthesis, and multifunctional properties are discussed.}, number={51}, journal={ADVANCED MATERIALS}, publisher={Wiley}, author={Rahmanian, Vahid and Pirzada, Tahira and Wang, Siyao and Khan, Saad A.}, year={2021}, month={Oct} }