@article{zheng_zhou_zhao_ye_zhang_ge_2021, title={Oriented PAN/PVDF/PAN laminated nanofiber separator for lithium-ion batteries}, volume={3}, ISSN={["1746-7748"]}, DOI={10.1177/00405175211005027}, abstractNote={Electrospun nanofiber separators have excellent properties in terms of large surface area and high porosity, which benefits the rate capability, electrochemical stability, and safety performance of lithium-ion batteries. Herein, a 0°PAN/PVDF/90°PAN-oriented composite nanofiber separator is prepared, which is prepared layer by layer by electrospinning technology and drum orientation collector. The results show that when the rotating speed of the drum is 600 r min−1, the 0°PAN/PVDF/90°PAN-oriented composite nanofiber separator has high porosity (about 85%), improved transverse and longitudinal tensile properties (10.33 MPa and 11.03 MPa, respectively), good dimensional stability at 160°C, and good electrochemical performance (specific charge capacity of 165 mAh g−1 at 0.5C and 142.7 mAh g−1 at 1C, capacity retention of 90% after 100 cycles).}, journal={TEXTILE RESEARCH JOURNAL}, author={Zheng, Yixiao and Zhou, Rongxin and Zhao, Huanhuan and Ye, Feng and Zhang, Xiangwu and Ge, Yeqian}, year={2021}, month={Mar} } @article{jia_dirican_aksu_sun_chen_zhu_zhu_yan_li_ge_et al._2019, title={Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery}, volume={536}, ISSN={["1095-7103"]}, url={https://publons.com/publon/26924626/}, DOI={10.1016/j.jcis.2018.10.101}, abstractNote={Antimony tin (SnSb) based materials have become increasingly attractive as a potential anode material for sodium-ion batteries (SIBs) owing to their prominent merit of high capacity. However, cyclic stability and rate capability of SnSb anodes are currently hindered by their large volume change during repeated cycling, which results in severe capacity fading. Herein, we introduce carbon-coated centrifugally-spun [email protected] microfiber (CMF) composites as high-performance anodes for SIBs that can maintain their structural stability during repeated charge-discharge cycles. The centrifugal spinning method was performed to fabricate [email protected] due to its high speed, low cost, and large-scale fabrication features. More importantly, extra carbon coating by chemical vapor deposition (CVD) has been demonstrated as an effective method to improve the capacity retention and Coulombic efficiency of the [email protected] anode. Electrochemical test results indicated that the as-prepared [email protected]@C anode could deliver a large reversible capacity of 798 mA h∙g−1 at the 20th cycle as well as a high capacity retention of 86.8% and excellent Coulombic efficiency of 98.1% at the 100th cycle. It is, therefore, demonstrated that [email protected]@C composite is a promising anode material candidate for future high-performance SIBs.}, journal={JOURNAL OF COLLOID AND INTERFACE SCIENCE}, author={Jia, Hao and Dirican, Mahmut and Aksu, Cemile and Sun, Na and Chen, Chen and Zhu, Jiadeng and Zhu, Pei and Yan, Chaoyi and Li, Ya and Ge, Yeqian and et al.}, year={2019}, month={Feb}, pages={655–663} } @article{ge_zhu_dirican_jia_yanilmaz_lu_chen_qiu_zhang_2017, title={Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite}, volume={188}, ISSN={["1873-4979"]}, url={https://publons.com/publon/26924645/}, DOI={10.1016/j.matlet.2016.11.025}, abstractNote={Nanofiber structured Na2Ti3O7 was synthesized via electrospinning process which was further used as an anode material for sodium-ion batteries for the first time. One-dimensional construction of Na2Ti3O7 composite could contribute to better electrochemical activity. It was demonstrated that the capacity of Na2Ti3O7 nanofibers was significantly improved to 257.8 mAh g−1 at 30 mA g−1. Furthermore, the rate capability of Na2Ti3O7 nanofibers was significantly enhanced, showing charge capacities were 161.8, 116.5, and 72.4 mAh g−1 at 100, 200, and 400 mA g−1, respectively. Therefore, improved specific capacity and rate capability made Na2Ti3O7 nanofibers composite as a promising anode material for sodium-ion batteries.}, journal={MATERIALS LETTERS}, publisher={Elsevier BV}, author={Ge, Yeqian and Zhu, Jiadeng and Dirican, Mahmut and Jia, Hao and Yanilmaz, Meltem and Lu, Yao and Chen, Chen and Qiu, Yiping and Zhang, Xiangwu}, year={2017}, month={Feb}, pages={176–179} } @article{yanilmaz_zhu_lu_ge_zhang_2017, title={High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries}, volume={52}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924646/}, DOI={10.1007/s10853-017-0764-8}, number={9}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Yanilmaz, Meltem and Zhu, Jiadeng and Lu, Yao and Ge, Yeqian and Zhang, Xiangwu}, year={2017}, month={May}, pages={5232–5241} } @article{zhu_ge_jasper_zhang_2017, title={Physical characterization of electrospun nanofibers}, volume={186}, ISBN={["9780-0-81-00907-9"]}, ISSN={["2042-0803"]}, url={https://publons.com/publon/26924651/}, DOI={10.1016/b978-0-08-100907-9.00009-x}, abstractNote={One-dimensional nanostructures produced by electrospinning offer many advantages. To better understand these electrospun nanofibers, we classify them into four categories: electrospun polymer nanofibers, electrospun metal nanofibers, electrospun carbon nanofibers, and electrospun composite nanofibers. In this chapter, we introduce corresponding physical characterizations and illustrate them with specific examples.}, journal={ELECTROSPUN NANOFIBERS}, publisher={Elsevier}, author={Zhu, J. and Ge, Y. and Jasper, S. and Zhang, X.}, year={2017}, pages={207–238} } @article{zhu_ge_kim_lu_chen_jiang_zhang_2016, title={A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries}, volume={20}, ISSN={["2211-3282"]}, url={https://doi.org/10.1016/j.nanoen.2015.12.022}, DOI={10.1016/j.nanoen.2015.12.022}, abstractNote={Lithium-sulfur batteries have received intense attention because of their high theoretical capacity, low cost and environmental friendliness. However, low active material utilization and poor cycle life limit their practical applications. Here, we report a strategy to obtain high capacity with long cycle life and rapid charge rate by introducing a carbon coating on the separator. Excellent cycling performance with a high capacity 956 mAh g−1 after 200 cycles and outstanding high-rate response up to 4 C are achieved, which are among the best reports so far. High electrochemical performance can be obtained even at a high sulfur loading of 3.37 mg cm−2. Such improved results could be ascribed to the conductive carbon coating, which not only reduces the cell resistance but blocks the diffusion of soluble polysulfides avoiding shuttle effect during cycling. This study demonstrates a feasible, low cost and scalable approach to address the long-term cycling challenge for lithium-sulfur batteries.}, journal={NANO ENERGY}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Ge, Yeqian and Kim, David and Lu, Yao and Chen, Chen and Jiang, Mengjin and Zhang, Xiangwu}, year={2016}, month={Feb}, pages={176–184} } @article{lu_fu_zhu_chen_yanilmaz_dirican_ge_jiang_zhang_2016, title={Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition}, volume={51}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924656/}, DOI={10.1007/s10853-016-9768-z}, number={9}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Lu, Yao and Fu, Kun and Zhu, Jiadeng and Chen, Chen and Yanilmaz, Meltem and Dirican, Mahmut and Ge, Yeqian and Jiang, Han and Zhang, Xiangwu}, year={2016}, month={May}, pages={4549–4558} } @article{alaboina_ge_uddin_liu_lee_park_zhang_cho_2016, title={Nanoscale Porous Lithium Titanate Anode for Superior High Temperature Performance}, volume={8}, ISSN={["1944-8252"]}, url={https://publons.com/publon/9482879/}, DOI={10.1021/acsami.6b00895}, abstractNote={In this work, nanoscale porous lithium titanate (LTO) anode material was synthesized by using aqueous spray drying method after ball milling. The size of the LTO nanoparticles was optimized to 200 nm because of its considerable moisture absorption levels for stable performance and its cooperation to make good quality electrodes found with testing. The electrochemical performance of the synthesized LTO nanoparticles was found to be very stable at high operating temperature (50 °C) and high current rate (5 C) which was worth noticing than its usual unfavorable behaviors (gas generation and surface phase transitions) at higher temperatures. In the postanalysis on the aged LTO cells, high-resolution-transmission electron microscope (HRTEM) and fast Fourier transform (FFT) measurements reveal that the LTO phase transitions are maintained to very thin surface level (3-5 nm) even after 500 cycles at 50 °C. Moreover, the synthesized LTO material showed stable cycling with a high capacity of 138.74 mA h g(-1) at 1 C rate and 111.53 mA h g(-1) at 5 C rate. Furthermore, high columbic efficiency and excellent capacity retention over 500 cycles at 50 °C was achieved. The enhanced electrochemical properties can be attributed to the increase in surface area and shortened Li(+) diffusion lengths because of the nanoscale primary particles and porous structure of the synthesized LTO particles.}, number={19}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Alaboina, Pankaj K. and Ge, Yeqian and Uddin, Md-Jamal and Liu, Yang and Lee, Dongsuek and Park, Seiung and Zhang, Xiangwu and Cho, Sung-Jin}, year={2016}, month={May}, pages={12127–12133} } @article{jiang_zhu_chen_lu_ge_zhang_2016, title={Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors}, volume={8}, ISSN={["1944-8244"]}, url={https://publons.com/publon/26924655/}, DOI={10.1021/acsami.5b11984}, abstractNote={Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.}, number={5}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Jiang, Mengjin and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Zhang, Xiangwu}, year={2016}, month={Feb}, pages={3473–3481} } @article{zhu_lu_chen_ge_jasper_leary_li_jiang_zhang_2016, title={Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity}, volume={672}, ISSN={["1873-4669"]}, url={https://doi.org/10.1016/j.jallcom.2016.02.160}, DOI={10.1016/j.jallcom.2016.02.160}, abstractNote={Hematite iron oxide (α-Fe2O3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g−1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe2O3 hinder its use in practical batteries. In this study, carbon-coated α-Fe2O3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g−1 even at superior high current density of 1000 mA g−1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe2O3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs.}, journal={JOURNAL OF ALLOYS AND COMPOUNDS}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Lu, Yao and Chen, Chen and Ge, Yeqian and Jasper, Samuel and Leary, Jennifer D. and Li, Dawei and Jiang, Mengjin and Zhang, Xiangwu}, year={2016}, month={Jul}, pages={79–85} } @article{chen_lu_ge_zhu_jiang_li_hu_zhang_2016, title={Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries}, volume={4}, ISSN={["2194-4296"]}, url={https://doi.org/10.1002/ente.201600205}, DOI={10.1002/ente.201600205}, abstractNote={Abstract}, number={11}, journal={ENERGY TECHNOLOGY}, publisher={Wiley}, author={Chen, Chen and Lu, Yao and Ge, Yeqian and Zhu, Jiadeng and Jiang, Han and Li, Yongqiang and Hu, Yi and Zhang, Xiangwu}, year={2016}, month={Nov}, pages={1440–1449} } @article{zhu_yanilmaz_fu_chen_lu_ge_kim_zhang_2016, title={Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries}, volume={504}, ISSN={["1873-3123"]}, url={https://publons.com/publon/26924654/}, DOI={10.1016/j.memsci.2016.01.020}, abstractNote={Glass fiber (GF) membrane is evaluated as a potential separator for lithium–sulfur batteries. It is found that GF membrane has a highly porous structure with superior thermal stability, resulting in high liquid electrolyte uptake and enhanced electrochemical performance. Li–S cells using GF membrane as the separator can retain a capacity of 617 mA h g−1 after 100 cycles at a current density of 0.2 C, which is 42% higher than that of cells using commercial microporous polypropylene separator. During rate capability tests, the capacity of Li–S cells using GF membrane decreases slowly from the reversible capacity of 616 mA h g−1 at 0.2 C to 505, 394 and 262 mA h g−1 at 0.5 C, 1 C, and 2 C, respectively. It should be noted that these cells can still deliver a high capacity of 587 mA h g−1 with a high retention of 95% when the current density is lowered back to 0.2 C. The improved cycling and rate performance are ascribed to the fact that the highly porous GF membrane can increase the intake of soluble polysulfide intermediates and slow down their rapid diffusion to the Li anode side, which can not only improve the utilization of active material, but help protect the Li anode surface as well.}, journal={JOURNAL OF MEMBRANE SCIENCE}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Yanilmaz, Meltem and Fu, Kun and Chen, Chen and Lu, Yao and Ge, Yeqian and Kim, David and Zhang, Xiangwu}, year={2016}, month={Apr}, pages={89–96} } @article{dirican_lu_ge_yildiz_zhang_2015, title={Carbon-Confined Sno(2)-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material}, volume={7}, ISSN={["1944-8252"]}, url={https://publons.com/publon/26924673/}, DOI={10.1021/acsami.5b04338}, abstractNote={Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).}, number={33}, journal={ACS APPLIED MATERIALS & INTERFACES}, publisher={American Chemical Society (ACS)}, author={Dirican, Mahmut and Lu, Yao and Ge, Yeqian and Yildiz, Ozkan and Zhang, Xiangwu}, year={2015}, month={Aug}, pages={18387–18396} } @article{jiang_ge_fu_lu_chen_zhu_dirican_zhang_2015, title={Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries}, volume={50}, ISSN={["1573-4803"]}, url={https://publons.com/publon/26924667/}, DOI={10.1007/s10853-014-8666-5}, number={3}, journal={JOURNAL OF MATERIALS SCIENCE}, publisher={Springer Nature}, author={Jiang, Han and Ge, Yeqian and Fu, Kun and Lu, Yao and Chen, Chen and Zhu, Jiadeng and Dirican, Mahmut and Zhang, Xiangwu}, year={2015}, month={Feb}, pages={1094–1102} } @article{ge_jiang_zhu_lu_chen_hu_qiu_zhang_2015, title={High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries}, volume={157}, ISSN={["1873-3859"]}, url={https://publons.com/publon/10720328/}, DOI={10.1016/j.electacta.2015.01.086}, abstractNote={Owing to the merits of good chemical stability, elemental abundance and nontoxicity, titanium dioxide (TiO2) has drawn increasing attraction for use as anode material in sodium-ion batteries. Nanostructured TiO2 was able to achieve high energy density. However, nanosized TiO2 is typically electrochemical instable, which leads to poor cycling performance. In order to improve the cycling stability, carbon from thermolysis of poly(vinyl pyrrolidone) was coated onto TiO2 nanoparticles. Electronic conductivity and electrochemical stability were enhanced by coating carbon onto TiO2 nanoparticles. The resultant carbon-coated TiO2 nanoparticles exhibited high reversible capacity (242.3 mAh g−1), high coulombic efficiency (97.8%), and good capacity retention (87.0%) at 30 mA g−1 over 100 cycles. By comparison, untreated TiO2 nanoparticles showed comparable reversible capacity (237.3 mAh g−1) and coulombic efficiency (96.2%), but poor capacity retention (53.2%) under the same condition. The rate performance of carbon-coated TiO2 nanoparticles was also displayed as high as 127.6 mAh g−1 at a current density of 800 mA g−1. The improved cycling performance and rate capability were mostly attributed to protective carbon layer helping stablize solid electrolyte interface formation of TiO2 nanoparticles and improving the electronic conductivity. Therefore, it is demonstrated that carbon-coated TiO2 nanoparticles are promising anode candidate for sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Hu, Yi and Qiu, Yiping and Zhang, Xiangwu}, year={2015}, month={Mar}, pages={142–148} } @article{zhu_chen_lu_ge_jiang_fu_zhang_2015, title={Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries}, volume={94}, ISSN={["1873-3891"]}, url={https://publons.com/publon/26924672/}, DOI={10.1016/j.carbon.2015.06.076}, abstractNote={Nitrogen-doped carbon nanofibers (N-CNFs) derived from polyacrylonitrile were successfully synthesized by a combination of electrospinning and thermal treatment processes. The as-prepared N-CNFs were used as anode material for sodium-ion batteries due to their unique fabric and weakly-ordered turbostratic structure as well as large spacing between graphene layers. Results show that N-CNFs carbonized at 800 °C delivered a high reversible capacity of 293 mAh g−1 at a current density of 50 mA g−1 in the first cycle. Even though the first-cycle Coulombic efficiency was 64%, it increased to nearly 100% only after a few initial cycles. Additionally, these N-CNFs showed excellent cycling and high-rate performance, and maintained a capacity of up to 150 mAh g−1 even at an extremely high current density of 1000 mA g−1 for over 200 cycles. It is, therefore, demonstrated that N-CNFs prepared under appropriate conditions are promising anode material candidate for sodium-ion batteries.}, journal={CARBON}, publisher={Elsevier BV}, author={Zhu, Jiadeng and Chen, Chen and Lu, Yao and Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Xiangwu}, year={2015}, month={Nov}, pages={189–195} } @article{ge_zhu_lu_chen_qiu_zhang_2015, title={The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites}, volume={176}, ISSN={["1873-3859"]}, url={https://publons.com/publon/26924674/}, DOI={10.1016/j.electacta.2015.07.105}, abstractNote={Titanium dioxide (TiO2) is a prospective anode candidate for sodium-ion batteries, owing to the advantages of good chemical stability, elemental abundance and nontoxicity. In this work, TiO2 embedded in carbon nanofiber (TiO2@CNF) composites are prepared for high-performance sodium-ion batteries by electrospinning and subsequent heat treatment in N2 at different temperatures. With increase in heat-treatment temperature, the diameter of nanofibers decreases and the crystal phase partially transforms from anatase to rutile. Among all composites, the TiO2@CNF composite treated at 550 °C has anatase structure and exhibits the highest initial reversible capacity (237.3 mAh g−1), largest initial coulombic efficiency (68.2%), and superior capacity retention (100.3%) over 100 cycles at 30 mA g−1. Whereas, the TiO2@CNF composite treated at 650 °C is 28.23% rutile and 71.77% anatase, and shows the best rate capability of 159.1 mAh g−1 even at current density of 800 mA g−1. It is, therefore, demonstrated that TiO2@CNF composites prepared with appropriate conditions are superior anode material for sodium-ion batteries.}, journal={ELECTROCHIMICA ACTA}, publisher={Elsevier BV}, author={Ge, Yeqian and Zhu, Jiadeng and Lu, Yao and Chen, Chen and Qiu, Yiping and Zhang, Xiangwu}, year={2015}, month={Sep}, pages={989–996} } @article{ge_jiang_fu_zhang_zhu_chen_lu_qiu_zhang_2014, title={Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries}, volume={272}, ISSN={["1873-2755"]}, url={https://doi.org/10.1016/j.jpowsour.2014.08.131}, DOI={10.1016/j.jpowsour.2014.08.131}, abstractNote={Lithium titanium oxide (Li4Ti5O12) is a promising anode material, owing to its superior safety and reliability. However, the main challenge of Li4Ti5O12 is the low material conductivity which restricts its electrochemical performance. In order to use Li4Ti5O12 in practical sodium-ion batteries, copper-doped Li4Ti5O12 (Li4−xCuxTi5O12, x = 0, 0.05, 0.1) nanoparticles were prepared to enhance the electronic conductivity. Copper-doped Li4Ti5O12 nanoparticles were then embedded in continuous carbon nanofibers (CNFs), which gave rise to fast electron transfer along the fiber direction. After copper-doping and CNF embedding, the resultant copper-doped Li4Ti5O12/CNFs achieved excellent reversible capacity (158.1 mAh g−1) at 30 mA g−1, high coulombic efficiency (99.87%), and good capacity retention (91%) after 150 cycles. In addition, copper-doped Li4Ti5O12/CNFs also exhibited good rate capability. It is, therefore, demonstrated that copper-doped Li4Ti5O12/CNFs are promising anode candidate.}, journal={JOURNAL OF POWER SOURCES}, publisher={Elsevier BV}, author={Ge, Yeqian and Jiang, Han and Fu, Kun and Zhang, Changhuan and Zhu, Jiadeng and Chen, Chen and Lu, Yao and Qiu, Yiping and Zhang, Xiangwu}, year={2014}, month={Dec}, pages={860–865} }