@inproceedings{morgan_xu_hopkins_husain_yu_2016, title={Decomposition and electro-physical model creation of the CREE 1200V, 50A 3-Ph SiC module}, url={https://www.lens.org/005-651-099-193-878}, DOI={10.1109/apec.2016.7468163}, abstractNote={The CREE 1200V/50A, 25mΩ 6-Pack SiC MOSFET module (CCS050M12CM2) is decomposed into a full 3D CAD model, and materials identified, for use in electrical circuit and multi-physics simulations. A reverse engineering technique is first developed, outlined, and then demonstrated on the CREE module. The ANSYS Q3D Extractor is applied to the 3D CAD model where electrical, lumped parameter, parasitic circuit elements are determined. The model is also analyzed with a multi-physics simulator to provide in-situ thermal maps of the baseplate surface for application scenarios, e.g. with a thermal interface material and pin fin heat sink to capture the thermal spreading from junction to case. The complete model is made open source and freely distributed for use by the reader.}, note={\urlhttps://ieeexplore.ieee.org/document/7468163 ; \urlhttps://works.bepress.com/kang-peng/10/download/ ; \urlhttps://works.bepress.com/kang-peng/10/}, booktitle={Apec 2016 31st annual ieee applied power electronics conference and exposition}, author={Morgan, A. J. and Xu, Y. and Hopkins, Douglas C and Husain, I. and Yu, W. S.}, year={2016}, pages={2141–2146} } @inproceedings{rahman_morgans_xu_gao_yu_hopkins_husain_2016, title={Design methodology for a planarized high power density EV/HEV traction drive using SiC power modules}, url={https://www.lens.org/036-754-675-774-950}, DOI={10.1109/ecce.2016.7855018}, abstractNote={This paper provides a methodology for overall system level design of a high-power density inverter to be used for EV/HEV traction drive applications. The system design is guided to accommodate off-the-shelf SiC power modules in a planar architecture that ensures proper electrical, thermal, and mechanical performances. Bi-directional interleaved DC-DC boost structure and a three-phase voltage source inverter (VSI) have been utilized with the primary focus on the size, weight and loss reduction of passive components. A stacked layer approach has been used for a unique PCB-based busbar, ultra-low profile gate driver, and controller board. This holistic design approach results in a highly compact traction drive inverter with power density of 12.1 kW/L that has lower volume and weight compared to the commercially available state-of-the-art power converter systems.}, note={\urlhttps://ieeexplore.ieee.org/document/7855018/}, booktitle={2016 ieee energy conversion congress and exposition (ecce)}, author={Rahman, D. and Morgans, A. J. and Xu, Y. and Gao, R. and Yu, W. S. and Hopkins, Douglas C and Husain, I.}, year={2016} } @inproceedings{xu_husain_west_yu_hopkins_2016, title={Development of an ultra-high density power chip on bus (PCoB) module}, url={https://www.lens.org/092-761-376-063-354}, DOI={10.1109/ecce.2016.7855040}, abstractNote={A traditional power module uses metal clad ceramic (e.g. DBC or DBA) bonded to a baseplate that creates a highly thermally resistive path, and wire bond interconnect that introduces substantial inductance and limits thermal management to single-sided cooling. This paper introduces a Power Chip on Bus (PCoB) power module approach that reduces parasitic inductance through an integrated power interconnect structure. The PCoB maximizes thermal performance by direct attaching power chips to the busbar, integrating the heatsink and busbar as one, and uses a dielectric fluid, such as air, for electrical isolation. This new power module topology features all planar interconnects and double-sided air cooling. Performance evaluations are carried out through comprehensive electrical and multi-physics simulation and thermal testing for a 1200V, 100A rated single-switch PCoB design. Fabrication and assembly processes are included. For the developed double-sided air-cooled module, 0.5°C/w thermal resistance and 8nH power loop parasitic inductance are achieved.}, note={\urlhttp://ieeexplore.ieee.org/document/7855040/}, booktitle={2016 ieee energy conversion congress and exposition (ecce)}, author={Xu, Y. and Husain, I. and West, H. and Yu, W. S. and Hopkins, Douglas C}, year={2016} } @inproceedings{xu_hopkins_2016, title={FEA-based thermal-mechanical optimization for DBC based power modules}, booktitle={2016 International Symposium on 3d Power Electronics Integration and Manufacturing (3d-PEIM)}, author={Xu, Y. and Hopkins, D.}, year={2016} } @inproceedings{xu_hopkins_2014, title={Misconception of thermal spreading angle and misapplication to IGBT power modules}, url={https://www.lens.org/136-404-571-880-535}, DOI={10.1109/apec.2014.6803362}, abstractNote={This paper analyzes the widely used 45 degrees thermal spreading model in IGBT package design and quantifies error in application to both single and multilayered package structures. The results are compared with finite element analysis (FEA). For single-layer heat transfer problem, the spreading angle model with a 45 degrees assumption provides a less than 20% conservative error of thermal resistance for a certain substrate layer thickness range, but is not applicable to multi-layered structures. For two or more layered structures, as commonly found in direct bonded copper (DBC) substrates and used in multiple-chip power modules (MCPMs), the 45 degrees fixed-angle method cannot capture the behavior of the heat transfer problem nor accurately predict the temperature of critical points for design. The method introduces substantial underestimation of junction temperature dependent on layer thickness ratios. An in-depth literature review was conducted and little, if any, concrete basis for the 45 degree assumption was found. Guidelines for using more accurate spreading-angle calculations are provided for the practice engineer.}, note={\urlhttps://ieeexplore.ieee.org/document/6803362}, booktitle={2014 twenty-ninth annual ieee applied power electronics conference and exposition (apec)}, author={Xu, Y. and Hopkins, Douglas C}, year={2014}, pages={545–551} }