@article{tyree_bellingham-johnstun_martinez-baird_laplante_2024, title={The Myosin-V Myo51 and Alpha-Actinin Ain1p Cooperate during Contractile Ring Assembly and Disassembly in Fission Yeast Cytokinesis}, volume={10}, ISSN={["2309-608X"]}, DOI={10.3390/jof10090647}, abstractNote={Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 in cytokinesis remains unclear. The previous work suggests that Myo51 may crosslink actin filaments. We hypothesized that if Myo51 crosslinks actin filaments, cells carrying double deletions of}, number={9}, journal={JOURNAL OF FUNGI}, author={Tyree, Zoe L. and Bellingham-Johnstun, Kimberly and Martinez-Baird, Jessica and Laplante, Caroline}, year={2024}, month={Sep} } @article{bellingham-johnstun_tyree_martinez-baird_thorn_laplante_2023, title={Actin-Microtubule Crosstalk Imparts Stiffness to the Contractile Ring in Fission Yeast}, volume={12}, ISSN={["2073-4409"]}, DOI={10.3390/cells12060917}, abstractNote={Actin–microtubule interactions are critical for cell division, yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring, and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubules and the impact on their physical attachment to the contractile ring remain unclear. We found that Myp2p facilitates the recruitment of Mto1p to the inner face of the contractile ring, where the eMTOCs polymerize microtubules without their direct interaction. The PAA microtubules form a dynamic polygon of Ase1p crosslinked microtubules inside the contractile ring. The specific loss of PAA microtubules affects the mechanical properties of the contractile ring of actin by lowering its stiffness. This change in the mechanical properties of the ring has no measurable impact on cytokinesis or on the anchoring of the ring. Our work proposes that the PAA microtubules exploit the contractile ring for their assembly and function during cell division, while the contractile ring may receive no benefit from these interactions.}, number={6}, journal={CELLS}, author={Bellingham-Johnstun, Kimberly and Tyree, Zoe L. and Martinez-Baird, Jessica and Thorn, Annelise and Laplante, Caroline}, year={2023}, month={Mar} } @article{bellingham-johnstun_commer_levesque_tyree_laplante_2022, title={Imp2p forms actin-dependent clusters and imparts stiffness to the contractile ring}, volume={33}, ISSN={["1939-4586"]}, DOI={10.1091/mbc.E22-06-0221}, abstractNote={ The contractile ring must anchor to the plasma membrane and cell wall to transmit its tension. We combine single molecule localization microscopy and laser ablation to reveal the molecular organization of Imp2p, a putative protein anchor, and its role in the mechanical properties of the contractile ring. }, number={14}, journal={MOLECULAR BIOLOGY OF THE CELL}, author={Bellingham-Johnstun, Kimberly and Commer, Blake and Levesque, Brie and Tyree, Zoe L. and Laplante, Caroline}, year={2022}, month={Dec} }