Zhen Qu
Nesser, H., Jacob, D. J., Maasakkers, J. D., Lorente, A., Chen, Z., Lu, X., … Randles, C. A. (2024). High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills. ATMOSPHERIC CHEMISTRY AND PHYSICS, 24(8), 5069–5091. https://doi.org/10.5194/acp-24-5069-2024
Liang, R., Zhang, Y., Chen, W., Zhang, P., Liu, J., Chen, C., … Aben, I. (2023). East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis. ATMOSPHERIC CHEMISTRY AND PHYSICS, 23(14), 8039–8057. https://doi.org/10.5194/acp-23-8039-2023
Lu, X., Jacob, D. J., Zhang, Y., Shen, L., Sulprizio, M. P., Maasakkers, J. D., … Fan, S. (2023). Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and fields tied to metrics. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 120(17). https://doi.org/10.1073/pnas.2217900120
Qu, Z., Jacob, D. J., Zhang, Y., Shen, L., Varon, D. J., Lu, X., … Parker, R. (2022). Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environmental Research Letters, 17(9), 094003. https://doi.org/10.1088/1748-9326/ac8754
Varon, D., Jacob, D. J., Sulprizio, M., Estrada, L. A., Downs, W. B., Shen, L., … Randles, C. A. (2022). Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations. Geoscientific Model Development, 15(14), 5787–5805. https://doi.org/10.5194/gmd-15-5787-2022
Chen, Z., Jacob, D. J., Nesser, H., Sulprizio, M. P., Lorente, A., Varon, D., … Yu, X. (2022). Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics, 22(16), 10809–10826. https://doi.org/10.5194/acp-22-10809-2022
Lu, X., Jacob, D. J., Wang, H., Maasakkers, J., Zhang, Y., Scarpelli, T. R., … Andrews, A. (2022). Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric observations. Atmospheric Chemistry and Physics, 22(1), 395–418. https://doi.org/10.5194/acp-22-395-2022
Jacob, D. J., Varon, D., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., … Duren, R. M. (2022). Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 22(14), 9617–9646. https://doi.org/10.5194/acp-22-9617-2022
Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers, J., Scarpelli, T., … Jacob, D. J. (2022). Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins. Atmospheric Chemistry and Physics, 22(17), 11203–11215. https://doi.org/10.5194/acp-22-11203-2022
Balamurugan, V., Chen, J., Qu, Z., Bi, X., & Keutsch, F. N. (2022). Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany. Atmospheric Chemistry and Physics, 22(11), 7105–7129. https://doi.org/10.5194/acp-22-7105-2022
Qu, Z., HENZE, D. A. V. E. N., Worden, H., Jiang, Z., Gaubert, B., Theys, N., & wei. (2022). Sector‐Based Top‐Down Estimates of NOx, SO2, and CO Emissions in East Asia. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021gl096009
Worden, J. R., Cusworth, D. H., Qu, Z., Yin, Y., Zhang, Y., Bloom, A. A., … Jacob, D. J. (2022). The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics, 22(10), 6811–6841. https://doi.org/10.5194/acp-22-6811-2022
Scarpelli, T., Jacob, D. J., Grossman, S., Lu, X., Qu, Z., Sulprizio, M. P., … Worden, J. R. (2022). Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations. Atmospheric Chemistry and Physics, 22(5), 3235–3249. https://doi.org/10.5194/acp-22-3235-2022
Cusworth, D. H., Bloom, A. A., Ma, S., Miller, C., Bowman, K., Yin, Y., … Worden, J. (2021). A Bayesian framework for deriving sector-based methane emissions from top-down fluxes. Communications Earth Environment, 2(1). https://doi.org/10.1038/s43247-021-00312-6
Qu, Z., Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T. R., … Lorente, A. (2021). Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 21(18), 14159–14175. https://doi.org/10.5194/acp-21-14159-2021
Nawaz, M. O., Henze, D. K., Harkins, C., Cao, H., Nault, B., Jo, D., … Qu, Z. (2021). Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in Washington, DC. Elementa: Science of the Anthropocene, 9(1). https://doi.org/10.1525/elementa.2021.00043
Campbell, P. C., Tong, D., Tang, Y., Baker, B., Lee, P., Saylor, R., … Qu, Z. (2021). Impacts of the COVID-19 economic slowdown on ozone pollution in the U.S. Atmospheric Environment, 264, 118713. https://doi.org/10.1016/j.atmosenv.2021.118713
Qu, Z., Wu, D., Henze, D. K., Li, Y., Sonenberg, M., & Mao, F. (2021). Transboundary transport of ozone pollution to a US border region: A case study of Yuma. Environmental Pollution, 273, 116421. https://doi.org/10.1016/j.envpol.2020.116421
Balamurugan, V., Chen, J., Qu, Z., Bi, X., Gensheimer, J., Shekhar, A., … keutsch. (2021). Tropospheric NO2 and O3 Response to COVID‐19 Lockdown Restrictions at the National and Urban Scales in Germany. Journal of Geophysical Research: Atmospheres, 126(19). https://doi.org/10.1029/2021jd035440
Qu, Z., Jacob, D. J., Silvern, R. F., Shah, V., Campbell, P. C., Valin, L., & Murray, L. T. (2021). US COVID‐19 Shutdown Demonstrates Importance of Background NO2 in Inferring NOx Emissions From Satellite NO2 Observations. Geophysical Research Letters, 48(10). https://doi.org/10.1029/2021gl092783
Shen, L., Zavala-Araiza, D., Gautam, R., Omara, M., Scarpelli, T., Sheng, J., … Jacob, D. J. (2021). Unravelling a large methane emission discrepancy in Mexico using satellite observations. Remote Sensing of Environment, 260, 112461. https://doi.org/10.1016/j.rse.2021.112461
Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J., Scarpelli, T. R., Sheng, J., … Boesch, H. (2020, September 25). Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations (Vol. 9). Vol. 9. https://doi.org/10.5194/acp-2020-964
Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J., Sulprizio, M. P., Shen, L., … Ma, S. (2020, September 17). Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations (Vol. 9). Vol. 9. https://doi.org/10.5194/acp-2020-775
Qu, Z., Henze, D. K., Cooper, O. R., & Neu, J. L. (2020). Impacts of global NOx inversions on NO2 and ozone simulations. Atmospheric Chemistry and Physics, 20(21), 13109–13130. https://doi.org/10.5194/acp-20-13109-2020
Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H., … Zheng, B. (2020). Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From Bottom‐Up Inventories, Top‐Down Estimates, and Emission Scenarios. Earth's Future, 8(8). https://doi.org/10.1029/2020ef001520
Wang, Y., Wang, J., Xu, X., Henze, D. K., Qu, Z., & Yang, K. (2020). Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data – Part 1: Formulation and sensitivity analysis. Atmospheric Chemistry and Physics, 20(11), 6631–6650. https://doi.org/10.5194/acp-20-6631-2020
Qu, Z., HENZE, D. A. V. E. N., Theys, N., Wang, J., & Wang, W. (2019). Hybrid Mass Balance/4D‐Var Joint Inversion of NOx and SO2 Emissions in East Asia. Journal of Geophysical Research: Atmospheres, 124(14), 8203–8224. https://doi.org/10.1029/2018jd030240
Qu, Z., HENZE, D. A. V. E. N., Li, C., Theys, N., Wang, Y., Wang, J., … Ren, X. (2019). SO2 Emission Estimates Using OMI SO2 Retrievals for 2005–2017. Journal of Geophysical Research: Atmospheres, 124(14), 8336–8359. https://doi.org/10.1029/2019jd030243
Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., … Boersma, K. F. (2018). Unexpected slowdown of US pollutant emission reduction in the past decade. Proceedings of the National Academy of Sciences, 115(20), 5099–5104. https://doi.org/10.1073/pnas.1801191115
Qu, Z., HENZE, D. A. V. E. N., Capps, S., Wang, Y., Xu, X., Wang, J., & Keller, M. (2017). Monthly top‐down NOx emissions for China (2005–2012): A hybrid inversion method and trend analysis. Journal of Geophysical Research: Atmospheres, 122(8), 4600–4625. https://doi.org/10.1002/2016jd025852
Wang, Y., Wang, J., Xu, X., Henze, D. K., Wang, Y., & Qu, Z. (2016). A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts. Geophysical Research Letters, 43(18), 9931–9938. https://doi.org/10.1002/2016gl070204