Mathematics - 2001 Bakalov, B., & Kirillov, A., Jr. (2001). Lectures on Tensor Categories and Modular Functors. https://doi.org/10.1090/ulect/021 Banks, H. T., & Tran, H. T. (2001). Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor. In Optimal Control of Complex Structures (pp. 1–17). https://doi.org/10.1007/978-3-0348-8148-7_1 Banks, H. T., Beeler, S. C., Kepler, G. M., & Tran, H. T. (2001). Feedback control of thin film growth in an HPCVD reactor via reduced order models. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228). Presented at the 40th Conference on Decision and Control. https://doi.org/10.1109/cdc.2001.981123 Bauschke, H. H., Borwein, J. M., & Combettes, P. L. (2001). Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Communications in Contemporary Mathematics, 3(4), 615–647. https://doi.org/10.1142/s0219199701000524 Carter, R., Gablonsky, J. M., Patrick, A., Kelley, C. T., & Eslinger, O. J. (2001). Algorithms for Noisy Problems in Gas Transmission Pipeline Optimization. Optimization and Engineering, 2, 139–157. Combettes, P. L. (2001). Convexité et signal. Actes du Congrès de Mathématiques Appliquées et Industrielles SMAI'01, 6–16. Combettes, P. L. (2001). Fejér-monotonicity in convex optimization. In C. A. Floudas & P. M. Pardalos (Eds.), Encyclopedia of Optimization (Vol. 2, pp. 106–114). New York: Springer-Verlag. Dougherty, D. P., Lubkin, S., & Breidt, F. (2001). An energy-based approach for modeling the batch culture of Lactococcus lactis in vegetable broth. Abstracts of the General Meeting of the American Society for Microbiology, 101, 434–435. Gremaud, P., Li, Z., Smith, R., & Tran, H. (Eds.). (2001). Industrial Mathematics Modeling Workshop for Graduate Students Series [CRSC Technical Reports]. Hong, H. (2001). Ore Principal Subresultant Coefficients in Solutions. Applicable Algebra in Engineering, Communication and Computing, 11(3), 227–237. https://doi.org/10.1007/s002000000041 Ismail, M. E. H., & Jing, N. (2001). q-discriminants and vertex operators. Advances in Applied Mathematics, 27(2-3), 482–492. https://doi.org/10.1006/aama.2001.0745 Kaltofen, E. (2001, May 23). Algorithms for sparse and black box matrices over finite fields. Presented at the International Conference on Finite Fields and Applications, Oaxaca, Mexico. Li, Z. (2001). Book Review: Generalized Difference Methods for Differential Equations [Review of Generalized Difference Methods for Differential Equations, by Z. Chen, R. Li, & W. Wu]. SIAM Review, 43(1), 203–205, Li, Z. (2001). Numerical Method for Simulation of Bubbles Flowing Through Another Fluid. In M. Mu, Z. Shi, W. Xue, & J. Zou (Eds.), Advances in Scientific Computing (pp. 74–81). Beijing: Science Pr. Lloyd, A. L. (2001). Realistic Distributions of Infectious Periods in Epidemic Models: Changing Patterns of Persistence and Dynamics. Theoretical Population Biology, 60(1), 59–71. https://doi.org/http://dx.doi.org/10.1006/tpbi.2001.1525 Lloyd, A. L., & May, R. M. (2001). Epidemiology: How Viruses Spread Among Computers and People. Science, 292(5520), 1316–1317. https://doi.org/10.1126/SCIENCE.1061076 May, R., & Lloyd, A. (2001). Infection dynamics on scale-free networks. Physical Review E, 64(6). https://doi.org/http://dx.doi.org/10.1103/physreve.64.066112 Mayer, A. S., Kelley, C. T., & Miller, C. T. (2001). Optimal Design for Problems Involving Flow and Transport Phenomena in Saturated Subsurface Systems (No. CRSC-TR01-33). North Carolina State University, Center for Research in Scientific Computation. Tran, H., & Lee, C. H. (2001). Chemical Vapor Deposition Processes: Reduced-order Modeling. In K. H. Jürgen Buschow, M. C. Flemings, E. J. Kramer, P. Veyssière, R. W. Cahn, B. Ilschner, & S. Mahajan (Eds.), Encyclopedia of Materials: Science and Technology (2nd ed., pp. 1183–1187). https://doi.org/10.1016/B0-08-043152-6/00221-7 Tsynkov, S. V., & Turkel, E. (2001). A Cartesian Perfectly Matched Layer for the ̆ppercaseHelmholtz Equation. In Tourrette Loı̈c & L. Halpern (Eds.), Absorbing Boundaries and Layers, Domain Decomposition Methods. ̆ppercaseApplications to Large Scale Computations (pp. 279–309). Huntington, NY: Nova Science Publishers, Inc.