TY - CONF
TI - Molecular Theory of Thermodynamic Factors in Solvent Extraction
AU - Tiepel, E.W.
AU - Gubbins, K.E.
T2 - International Solvent Extraction Conference
C2 - 1971///
C3 - Proceedings of the International Solvent Extraction Conference
CY - The Hague
DA - 1971///
PY - 1971///
PB - Society of Chemical Industry
ER -
TY - JOUR
TI - Perturbation theory for the radial distribution function
AU - Gubbins, K.E.
AU - Smith, W.R.
AU - Tham, M.K.
AU - Tiepel, E.W.
T2 - Molecular Physics
AB - Perturbation theory is used to consider expansions for the radial distribution function, g 2(r), of a fluid with a soft core. We consider the Lennard-Jones (12, 6) potential and divide it into repulsive and attractive regions. In the repulsive region we expand the function exp (β u(r))g 2(r) about a hard sphere value. For the first-order contribution of the attractive region we consider a simple approximation to the exact analytical expression. The resulting g 2(r) is accurate at densities below about ρσ 3=0·5.
DA - 1971/1//
PY - 1971/1//
DO - 10.1080/00268977100103401
VL - 22
IS - 6
SP - 1089-1105
J2 - Molecular Physics
LA - en
OP -
SN - 0026-8976 1362-3028
UR - http://dx.doi.org/10.1080/00268977100103401
DB - Crossref
ER -
TY - JOUR
TI - Density hierarchy for the time-dependent correlation functions
AU - Egelstaff, P.A.
AU - Gray, C.G.
AU - Gubbins, K.E.
T2 - Physics Letters A
AB - The density derivative of the time-dependent pair correlation function is related to the time-dependent triplet correlation function. This relation is one of a hierarchy, giving a generalization of the density hierarchy for the equilibrium correlation functions.
DA - 1971/12//
PY - 1971/12//
DO - 10.1016/0375-9601(71)90690-6
VL - 37
IS - 4
SP - 321-322
J2 - Physics Letters A
LA - en
OP -
SN - 0375-9601
UR - http://dx.doi.org/10.1016/0375-9601(71)90690-6
DB - Crossref
ER -
TY - JOUR
TI - Kinetic Theory of Multicomponent Dense Fluid Mixtures of Rigid Spheres
AU - Tham, M. K.
AU - Gubbins, K. E.
T2 - The Journal of Chemical Physics
AB - The Enskog theory of dense, rigid-sphere fluids is extended to the multicomponent case. Equations obtained for the transport coefficients reduce to Thorne's equations in the special case of two components. The theory is used to predict the effect of the various independent variables on the isothermal diffusion coefficients for a ternary rigid-sphere mixture. It is found that coupling can be important if the constituents have significantly different rigid-sphere diameters. The special case of a ternary mixture with one component dilute is also considered. Many of the trends observed for rigid-sphere mixtures are in agreement with experimental observations for mixtures of real fluids.
DA - 1971/7//
PY - 1971/7//
DO - 10.1063/1.1675518
VL - 55
IS - 1
SP - 268-279
J2 - The Journal of Chemical Physics
LA - en
OP -
SN - 0021-9606 1089-7690
UR - http://dx.doi.org/10.1063/1.1675518
DB - Crossref
ER -