College of Textiles Administration - 2019 Schuchard, K., Pourdeyhimi, B., Fisher, M. B., & Shirwaiker, R. (2019). Investigating Process-Structure Relationships of 3D-MeltBlowing for Tissue Engineering Applications. Presented at the Institute of Industrial and Systems Engineers Annual Conference, Orlando, FL. Pourdeyhimi, B. (2019, October). Nonwoven Sustainability (Keynote). Presented at the Nonwoven Research Academy, EDANA, Denkendorf, Germany. Pourdeyhimi, B. (2019, September). Recent Trends in Nonwovens and Sustainability. Presented at the RISE, Raleigh, NC. Schuchard, K., Anderson, B., Grondin, P., Fisher, M. B., Pourdeyhimi, B., & Shirwaiker, R. (2019). Anisotropic Scaffold Fabrication using High-Throughput 3D-Melt Blowing. Presented at the Biofabrication, Columbus, OH. Pourdeyhimi, B. (2019). Elastomeric depth filter (U.S. Patent No. 10,464,000). Ghosal, A., Chen, K., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2019). Modeling Polymer Crystallization Kinetics in the Meltblowing Process. Industrial & Engineering Chemistry Research, 59(1), 399–412. https://doi.org/10.1021/acs.iecr.9b04840 Rezaei Arangdad, S., Thoney-Barletta, K., Joines, J., & Rothenberg, L. (2019). Influence of demographics and motivational factors on US consumer clothing and shoes disposal behavior. Research Journal of Textile and Apparel, 23(3), 170–188. https://doi.org/10.1108/rjta-08-2018-0051 Zhao, Y., Wang, J., Li, Z., Zhang, X., Tian, M., Zhang, X., … Zhu, S. (2019). Washable, durable and flame retardant conductive textiles based on reduced graphene oxide modification. CELLULOSE. https://doi.org/10.1007/s10570-019-02884-1 Zhang, W., Yarin, A. L., & Pourdeyhimi, B. (2019). Cohesion energy of thermally-bonded polyethylene terephthalate nonwovens: Experiments and theory. Polymer Testing, 78, 105984. https://doi.org/10.1016/j.polymertesting.2019.105984 Pourdeyhimi, B., Maze, B., Farukh, F., & Silberschmidt, V. V. (2019). Nonwovens-Structure-process-property relationships. STRUCTURE AND MECHANICS OF TEXTILE FIBRE ASSEMBLIES, 2ND EDITION, pp. 109–143. https://doi.org/10.1016/B978-0-08-102619-9.00004-3 Li, G., Sankaran, A., Yarin, A. L., & Pourdeyhimi, B. (2019). Hydroentangled polymer nonwovens: Prediction of jet streaks and surface roughness. POLYMER, 180. https://doi.org/10.1016/j.polymer.2019.121731 Jamali, M., Tafreshi, H. V., & Pourdeyhimi, B. (2019). Easy-to-use correlations to estimate droplet mobility on hydrophobic fibrous coatings. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 582. https://doi.org/10.1016/j.colsurfa.2019.123867 Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics. (2019). ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.9B04596 Kiyak, Y., Maze, B., & Pourdeyhimi, B. (2019). Microfiber Nonwovens as Potential Membranes. SEPARATION AND PURIFICATION REVIEWS, 48(4), 282–297. https://doi.org/10.1080/15422119.2018.1479968 Stoll, K. R., Scholle, F., Zhu, J., Zhang, X., & Ghiladi, R. A. (2019). BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 18(8), 1923–1932. https://doi.org/10.1039/c9pp00103d Kim, H., Ramalingam, M., Balakumar, V., Zhang, X., Gao, W., Son, Y.-A., & Bradford, P. D. (2019). AgNP/crystalline PANI/EBP-composite-based supercapacitor electrode with internal chemical interactions. JOURNAL OF APPLIED POLYMER SCIENCE, 136(44). https://doi.org/10.1002/app.48164 Tabor, J., Wust, C., & Pourdeyhimi, B. (2019). The role of staple fiber length on the performance of carded, hydroentangled nonwovens produced with polypropylene fibers. JOURNAL OF ENGINEERED FIBERS AND FABRICS, 14. https://doi.org/10.1177/1558925019870058 Yanilmaz, M., Dirican, M., Asiri, A. M., & Zhang, X. (2019). Flexible polyaniline-carbon nanofiber supercapacitor electrodes. JOURNAL OF ENERGY STORAGE, 24. https://doi.org/10.1016/j.est.2019.100766 Shanmugapriya, S., Zhu, P., Yan, C., Asiri, A. M., Zhang, X., & Selvan, R. K. (2019). Multifunctional High-Performance Electrocatalytic Properties of Nb2O5 Incorporated Carbon Nanofibers as Pt Support Catalyst. ADVANCED MATERIALS INTERFACES, 6(17). https://doi.org/10.1002/admi.201900565 Yousefi, S. H., Tang, C., Tafreshi, H. V., & Pourdeyhimi, B. (2019). Empirical model to simulate morphology of electrospun polycaprolactone mats. Journal of Applied Polymer Science, 136(46), 48242. https://doi.org/10.1002/app.48242 Chen, H., Xu, H., Zeng, Y., Ma, T., Wang, W., Liu, L., … Qiu, X. (2019). Quantification on Growing Mass of Solid Electrolyte Interphase and Deposited Mn(II) on the Silicon Anode of LiMn2O4 Full Lithium-Ion Cells. ACS Applied Materials & Interfaces, 11(31), 27839–27845. https://doi.org/10.1021/acsami.9b07400 Chen, C., Dirican, M., & Zhang, X. (2019). CENTRIFUGAL SPINNING-HIGH RATE PRODUCTION OF NANOFIBERS. ELECTROSPINNING: NANOFABRICATION AND APPLICATIONS, pp. 321–338. https://doi.org/10.1016/B978-0-323-51270-1.00010-8 Suvari, F., Ulcay, Y., & Pourdeyhimi, B. (2019). Influence of sea polymer removal on sound absorption behavior of islands-in-the-sea spunbonded nonwovens. TEXTILE RESEARCH JOURNAL, 89(12), 2444–2455. https://doi.org/10.1177/0040517518797332 Jamali, M., Vahedi Tafreshi, H., & Pourdeyhimi, B. (2019). Penetration of liquid droplets into hydrophobic fibrous materials under enhanced gravity. Journal of Applied Physics, 125(14), 145304. https://doi.org/10.1063/1.5092227 Cai, S., Pourdeyhimi, B., & Loboa, E. G. (2019). Industrial-scale fabrication of an osteogenic and antibacterial PLA/silver-loaded calcium phosphate composite with significantly reduced cytotoxicity. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 107(4), 900–910. https://doi.org/10.1002/jbm.b.34185 Jia, H., Dirican, M., Sun, N., Chen, C., Yan, C., Zhu, P., … Zhang, X. (2019). Advanced ZnSnS3@rGO Anode Material for Superior Sodium-Ion and Lithium-Ion Storage with Ultralong Cycle Life. CHEMELECTROCHEM, 6(4), 1183–1191. https://doi.org/10.1002/celc.201801333 Tabors, J., Wust, C., & Pourdeyhimi, B. (2019). The role of staple fiber length on the performance of carded, hydroentangled nonwovens produced with splittable fibers. JOURNAL OF ENGINEERED FIBERS AND FABRICS, 14. https://doi.org/10.1177/1558925019832526 Yildiz, O., Dirican, M., Fang, X., Fu, K., Jia, H., Stano, K., … Bradford, P. D. (2019). Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 166(4), A473–A479. https://doi.org/10.1149/2.0821902jes Li, G., Staszel, C., Yarin, A. L., & Pourdeyhimi, B. (2019). Hydroentanglement of Polymer Nonwovens 2: Simulation of multiple polymer fibers and prediction of entanglement. POLYMER, 164, 205–216. https://doi.org/10.1016/j.polymer.2018.11.004 Li, G., Staszel, C., Yarin, A. L., & Pourdeyhimi, B. (2019). Hydroentanglement of polymer nonwovens. 1: Experimental and theoretical/numerical framework. POLYMER, 164, 191–204. https://doi.org/10.1016/j.polymer.2018.11.059 Moghadam, A., Yousefi, S. H., Tafreshi, H. V., & Pourdeyhimi, B. (2019). Characterizing nonwoven materials via realistic microstructural modeling. SEPARATION AND PURIFICATION TECHNOLOGY, 211, 602–609. https://doi.org/10.1016/j.seppur.2018.10.018 Zhu, P., Yan, C., Zhu, J., Zang, J., Jia, H., Dong, X., … Li, Y. (2019). Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. ENERGY STORAGE MATERIALS, 17, 220–225. https://doi.org/10.1016/j.ensm.2018.11.009 Jia, H., Dirican, M., Sun, N., Chen, C., Zhu, P., Yan, C., … Zhang, X. (2019). SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability. CHEMICAL COMMUNICATIONS, 55(4), 505–508. https://doi.org/10.1039/c8cc07332e Surendran, S., Shanmugapriya, S., Zhu, P., Yan, C., Vignesh, R. H., Lee, Y. S., … Selvan, R. K. (2019). Hydrothermally synthesised NiCoP nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. ELECTROCHIMICA ACTA, 296, 1083–1094. https://doi.org/10.1016/j.electacta.2018.11.078 Jia, H., Dirican, M., Aksu, C., Sun, N., Chen, C., Zhu, J., … Zhang, X. (2019). Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 536, 655–663. https://doi.org/10.1016/j.jcis.2018.10.101 Zhu, J., Zhu, P., Yan, C., Dong, X., & Zhang, X. (2019). Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science, 90, 118–163. https://doi.org/10.1016/j.progpolymsci.2018.12.002 Dirican, M., Yan, C., Zhu, P., & Zhang, X. (2019). Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports, 136, 27–46. https://doi.org/10.1016/j.mser.2018.10.004