2022 journal article
Deep learning based data prefetching in CPU-GPU unified virtual memory
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 174, 19–31.
Unified Virtual Memory (UVM) relieves the developers from the onus of maintaining complex data structures and explicit data migration by enabling on-demand data movement between CPU memory and GPU memory. However, on-demand paging soon becomes a performance bottleneck of UVM due to the high latency caused by page table walks and data migration over interconnect. Prefetching is considered a promising solution to this problem given its ability to leverage the locality of program memory access patterns. However, existing locality-based prefetching schemes can not handle all the situations. An ideal prefetcher should not only look at narrow regions of the requested address space but also capture global context to deliver a good prediction of the memory access pattern. This paper proposes a novel framework for page prefetching for UVM through deep learning. We first show that a powerful Transformer learning model can provide high accuracy for UVM page prefetching. We then perform analysis to interpret this Transformer model and derive several insights that allow us to design a simpler model to match the unconstrained model's accuracy with orders of magnitude lower cost. We use a pattern-based method to make the UVM page preditor general to different GPU workloads. We evaluate this framework on a set of 11 memory-intensive benchmarks from popular benchmark suites. Our solution outperforms the state-of-the-art (SOTA) UVM framework, improving the performance by 10.89%, improving the device memory page hit rate by 16.98% (89.02% vs. 76.10% for prior art), and reducing the CPU-GPU interconnect traffic by 11.05%. According to our proposed unified metric, which combines the accuracy, coverage, and page hit rate, our solution is approaching the ideal prefetching scheme more than the SOTA design (0.90 vs. 0.85, with the perfect prefetcher of 1.0).