2022 article

Mismatched Estimation in the Distance Geometry Problem

2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, pp. 1031–1035.

By: M. Abdelkhalek n, D. Baron n & C. Wong n

TL;DR: This paper argues that more accurate estimates can be obtained when an estimation procedure that uses the correct likelihood function of noisy measurements is performed, and demonstrates that least-squares estimates could be suboptimal by several dB. (via Semantic Scholar)
Source: Web Of Science
Added: June 5, 2023

We investigate mismatched estimation in the context of the distance geometry problem (DGP). In the DGP, for a set of points, we are given noisy measurements of pairwise distances between the points, and our objective is to determine the geometric locations of the points. A common approach to deal with noisy measurements of pairwise distances is to compute least-squares estimates of the locations of the points. However, these least-squares estimates are likely to be suboptimal, because they do not necessarily maximize the correct likelihood function. In this paper, we argue that more accurate estimates can be obtained when an estimation procedure that uses the correct likelihood function of noisy measurements is performed. Our numerical results demonstrate that least-squares estimates can be suboptimal by several dB.