2023 article

Characterization of integration sites and transfer DNA structures in Agrobacterium-mediated transgenic events of maize inbred B104

Neelakandan, A. K., Kabahuma, M., Yang, Q., Lopez, M., Wisser, R. J., Balint-Kurti, P., & Lauter, N. (2023, July 31). G3-GENES GENOMES GENETICS.

By: A. Neelakandan*, M. Kabahuma*, Q. Yang n, M. Lopez*, R. Wisser*, P. Balint-Kurti n, N. Lauter*

author keywords: maize; T-DNA; transformation; nonhomologous end-joining; integration; Agrobacterium; genetic engineering; disease resistance; Plant Genetics and Genomics
TL;DR: A quantitative assessment of Agrobacterium-mediated T-DNA integration in maize is provided with respect to insertion site features, the genomic distribution of T- DNA incorporation, and mechanisms of integration, and the utility of the FPNI-PCR technique is demonstrated. (via Semantic Scholar)
UN Sustainable Development Goal Categories
15. Life on Land (Web of Science)
Source: Web Of Science
Added: September 5, 2023

Abstract