2023 journal article
A rapid, high-throughput, viral infectivity assay using automated brightfield microscopy with machine learning
SLAS TECHNOLOGY, 28(5), 324–333.
![UN Sustainable Development Goals Color Wheel](/assets/un-sdg/SDG-Wheel_WEB-small-9baffff2694056ba5d79cdadadac07d345a206e13477bd1034bd8925f38f3c4b.png)
Infectivity assays are essential for the development of viral vaccines, antiviral therapies, and the manufacture of biologicals. Traditionally, these assays take 2-7 days and require several manual processing steps after infection. We describe an automated viral infectivity assay (AVIATM), using convolutional neural networks (CNNs) and high-throughput brightfield microscopy on 96-well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. CNN models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit between virus dilution curves and CNN predictions, results in sensitivity ranges comparable to or better than conventional plaque or TCID50 assays, and a precision of ∼10%, which is considerably better than conventional infectivity assays. Because this technology is based on sensitizing CNNs to specific phenotypes of infection, it has potential as a rapid, broad-spectrum tool for virus characterization, and potentially identification.