2023 journal article

Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study

TOXINS, 15(12).

By: E. Pierce n & A. Schnetzer n

author keywords: microcystin; cyanobacterial harmful algal bloom; microcystin congeners; microcystin persistence; particulate and dissolved phases; North Carolina
Source: Web Of Science
Added: January 16, 2024

Microcystin can be present in variable concentrations, phases (dissolved and particulate), and structural forms (congeners), all which impact the toxicity and persistence of the algal metabolite. Conducting incubation experiments with six bloom assemblages collected from the Chowan River, North Carolina, we assessed microcystin dynamics during active growth and biomass degradation. Upon collection, average particulate and dissolved microcystin ranged between 0.2 and 993 µg L−1 and 0.5 and 3.6 µg L−1, respectively. The presence of congeners MC-LA, -LR, -RR, and -YR was confirmed with MC-RR and MC-LR being the most prevalent. Congener composition shifted over time and varied between dissolved and particulate phases. Particulate microcystin exponentially declined in five of six incubations with an average half-life of 10.2 ± 3.7 days, while dissolved microcystin remained detectable until the end of the incubation trials (up to 100 days). Our findings suggest that concerns about food-web transfer via intracellular toxins seem most warranted within the first few weeks of the bloom peak, while dissolved toxins linger for several months in the aftermath of the event. Also, it was indicated there were differences in congener profiles linked to the sampling method. We believe this study can inform monitoring strategies and aid microcystin-exposure risk assessments for cyanobacterial blooms.