2024 journal article

Progress towards edge-localized mode suppression via magnetic perturbations in hydrogen plasmas

Nuclear Fusion.

UN Sustainable Development Goal Categories
Source: ORCID
Added: February 2, 2024

Abstract The suppression of edge-localized modes (ELMs) by applying resonant magnetic perturbations (RMPs) is well studied in low collisionality deuterium plasmas as a measure to reduce transient divertor heat loads. However, ELM suppression has yet to be demonstrated in non-nuclear fuels such as hydrogen and hydrogen + helium mixtures which are the main ion species to be used in the ITER pre-fusion power operation (PFPO) phase. For the first time, attempts have been made to access ELM suppression with RMPs in ITER-like low collisionality hydrogen plasmas at DIII-D and ASDEX Upgrade. The DIII-D experiments focused on operation with injected power slightly above the L–H power threshold similar to the expected conditions in the ITER PFPO phase with limited external heating power. The RMPs were found to trigger H–L backtransitions, which is shown to be avoided by reducing the L–H power threshold by diluting the plasma with helium. The additional helium combined with a larger measured neutral density of hydrogen inside the separatrix compared to ELM suppressed deuterium plasmas precluded access to a pedestal top density below the known RMP-ELM suppression threshold. At ASDEX Upgrade, RMP-ELM suppression has been achieved when the concentration of 1H in the hydrogen isotope mix is below 40 % . While all known access criteria for RMP-ELM suppression were met above this threshold, full ELM suppression was replaced by strong mitigation. The most prominent difference between the hydrogen and deuterium plasmas was a change of turbulence characteristics in the pedestal where Doppler reflectometry measurements suggest a significant reduction of turbulence even at small hydrogen concentrations. In conclusion, these experiments not only identify issues that may prevent access to RMP-ELM suppression in the ITER PFPO phase, but also highlight missing physics in our current understanding of RMP-ELM suppression such as potentially the role of turbulence in the pedestal gradient region.