2024 article
Understanding the role of vegetation responses to drought in regulating autumn senescence
Choi, E., & Gray, J. (2024, March 9).
Vegetation phenology is the recurring of plant growth, including the cessation and resumption of growth, and plays a significant role in shaping terrestrial water, nutrient, and carbon cycles. Changes in temperature and precipitation have already induced phenological changes around the globe, and these trends are likely to continue or even accelerate. While warming has advanced spring arrival in many places, the effects on autumn phenology are less clear-cut, with evidence for earlier, delayed, or even unchanged end of the growing season (EOS). Meteorological droughts are intensifying in duration and frequency because of climate change. Droughts intricately impact changes in vegetation, contingent upon whether the ecosystem is limited by water or energy. These droughts have the potential to influence EOS changes. Despite this, the influence of drought on EOS remains largely unexplored. This study examined moisture’s role in controlling EOS by understanding the relationship between precipitation anomalies, vegetation’s sensitivity to precipitation (SPPT), and EOS. We also assess regional variations in responses to the impact of SPPT on EOS.The study utilized multiple vegetation and water satellite products to examine the patterns of SPPT in drought and its impact on EOS across aridity gradients and vegetation types. By collectively evaluating diverse SPPTs from various satellite datasets, this work offers a comprehensive understanding and critical basis for assessing the impact of drought on EOS. We focused on the Northern Hemisphere from 2000 to 2020, employing robust statistical methods. This work found that, in many places, there was a stronger relationship between EOS and drought in areas with higher SPPT. Additionally, a non-linear negative relationship was identified between EOS and SPPT in drier regions, contracting with a non-linear positive relationship observed in wetter regions. These findings were consistent across a range of satellite-derived vegetation products. Our findings provide valuable insights into the effects of SPPT on EOS during drought, enhancing our understanding of vegetation responses to drought and its consequences on EOS and aiding in identifying drought-vulnerable areas.