2024 journal article
Advanced functionalities of Gd 0.1 Ta 0.1 Ti 0.1 O 2 ceramic powder/P (VDF-TrFE) films for enhanced triboelectric performance
SENSORS AND ACTUATORS A-PHYSICAL, 373.
Triboelectric nanogenerator (TENG) had gained significant traction for their adeptness in converting diverse mechanical energies into electrical power. However, maintaining operational efficiency and stability amidst environmental temperature fluctuations had been a pressing concern. In this study, we addressed this challenge by leveraging Gd0.1Ta0.1Ti0.1O2(GTT) ceramic powder to engineer temperature-stable dielectric materials with heightened dielectric constants. These materials were seamlessly integrated with P(VDF-TrFE) to fabricate a composite thin film serving as the GTT-TENG triboelectric layer. The resultant GTT-TENG demonstrated remarkable electrical attributes, boasting an open-circuit voltage (VOC) of 134.6 V and a short-circuit current (ISC) of 3.75 μA, excellent P(VDF-TrFE) thin film-based TENGs. Notably, the relative change in VOC and ISC over a temperature range from -10°C to 180°C was recorded at 17.21% and 22.53%, respectively. Furthermore, the GTT-TENG showcased its capacity to concurrently power 60 LEDs, underscoring its versatility as a self-powered device. This study not only propelled TENG performance from a materials-centric standpoint but also alleviated its susceptibility to environmental temperature, thereby broadening its potential utility across diverse applications.